Supporting Information

Imino Phenoxide Complexes of Group 4 metals: Synthesis, Structural Characterization and Polymerization Studies

Tanmoy Kumar Saha, Mrinmay Mandal, Debashis Chakraborty*, Venkatachalam Ramkumar

Department of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, Tamil Nadu, India. E-mail: <u>dchakraborty@iitm.ac.in</u>

Fig. S1. ¹H NMR (400 MHz, CDCl₃) of Compound 1

Fig. S2. ¹³C NMR (100 MHz, CDCl₃) of Compound **1**

Fig. S3. ESI-Mass Spectrum of Compound 1

Fig. S4. ¹H NMR (400 MHz, CDCl₃) of Compound 2

Fig. S5. ¹³C NMR (100 MHz, CDCl₃) of Compound 2

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

Fig. S6. ESI-Mass spectrum of Compound 2

Fig. S7. ¹H NMR (400 MHz, CDCl₃) of Compound 3

Fig. S8. ¹³C NMR (100 MHz, CDCl₃) of Compound 3

Fig. S9. ESI-Mass Spectrum of Compound 3

Fig. S10. ¹H NMR (400 MHz, CDCl₃) of Compound 4

Fig. S11. ¹³C NMR (100 MHz, CDCl₃) of Compound 4

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

Fig. S12. ESI-Mass Spectrum of Compound 4

Fig. S13. ¹H NMR (400 MHz, CDCl₃) of Compound 5

Fig. S14. ¹³C NMR (100 MHz, CDCl₃) of Compound 5

Fig. S15. ESI-Mass Spectrum of Compound 5

Fig. S16. ¹H NMR (400 MHz, CDCl₃) of Compound 6

Fig. S17. ¹³C NMR (100 MHz, CDCl₃) of Compound 6

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

Fig. S18. ESI-Mass Spectrum of Compound 6

Fig. S19. ¹H NMR (400 MHz, CDCl₃) of Compound 7

Fig. S20. ¹³C NMR (100 MHz, CDCl₃) of Compound 7

Fig. S21. ESI-Mass Spectrum of Compound 7

Fig. S22. ¹H NMR (400 MHz, CDCl₃) of Compound 8

Fig. S23. ¹³C NMR (100 MHz, CDCl₃) of Compound 8

Fig. S24. ESI-Mass Spectrum of Compound 8

Fig. S25. ¹H NMR (400 MHz, CDCl₃) of Compound 9

Fig. S26. ¹³C NMR (100 MHz, CDCl₃) of Compound 9

Fig. S27. ESI-Mass Spectrum of Compound 9

Fig. S28. Variable temperature ¹H NMR (400 MHz, CDCl₃) of Compound **1**

Fig. S29. Variable temperature ¹H NMR (400 MHz, CDCl₃) of Compound 4

Fig. S30. Variable temperature ¹³C NMR (100 MHz, CDCl₃) of Compound 1

Fig. S31. Variable temperature ¹³C NMR (100 MHz, CDCl₃) of Compound 4

Entry	Initiator	Monomer	Yield	Time ^a /	$^{b}M_{n}^{obs}/$	$^{c}M_{n}^{\text{theo}}/$	$M_{\rm w}/M_{\rm n}$	$P_{\rm r}^{\ d}$
			(%)	min	kgmol ⁻¹	kgmol ⁻¹		
1	1	rac-LA	99	55	30.22	28.89	1.03	0.68
2	2	rac-LA	99	80	29.94	28.89	1.02	0.69
3	3	rac-LA	98	71	30.12	28.89	1.04	0.70
4	4	rac-LA	99	68	31.25	28.89	1.02	0.72
5	5	rac-LA	97	88	30.46	28.89	1.04	0.71
6	6	rac-LA	98	92	30.64	28.89	1.05	0.74
7	7	rac-LA	98	70	31.39	28.89	1.02	0.68
8	8	rac-LA	99	100	30.05	28.89	1.03	0.70
9	9	rac-LA	98	140	31.56	28.89	1.06	0.66
10	1	L-LA	99	50	31.23	28.89	1.02	
11	2	L-LA	99	74	30.45	28.89	1.03	
12	3	L-LA	99	60	29.22	28.89	1.02	
13	4	L-LA	97	78	29.62	28.89	1.04	
14	5	L-LA	98	88	31.98	28.89	1.05	
15	6	L-LA	97	76	30.21	28.89	1.07	
16	7	L-LA	98	105	29.34	28.89	1.08	
17	8	L-LA	98	134	30.66	28.89	1.06	
18	9	L-LA	98	138	29.11	28.89	1.05	
19	1	CL	99	44	24.59	22.83	1.03	
20	2	CL	99	64	23.98	22.83	1.05	
21	3	CL	99	48	25.17	22.83	1.06	
22	4	CL	99	49	25.02	22.83	1.02	
23	5	CL	98	82	24.64	22.83	1.04	
24	6	CL	98	60	21.32	22.83	1.03	
25	7	CL	97	77	24.79	22.83	1.03	
26	8	CL	99	97	25.11	22.83	1.02	
27	9	CL	98	87	25.78	22.83	1.05	

Table Solution polymerization data for *rac*-LA, *L*-LA and CL using **1–9** in 200:1 ratio at 80 $^{\circ}$ C

^{*a*}Time of polymerization measured by quenching the polymerization reaction when all monomer was found consumed. ^{*b*}Measured by GPC at 27 °C in THF relative to polystyrene standards with Mark-Houwink corrections for M_n for LA polymerization. ^{*c*} M_n (theoretical) at 100 % conversion = $[M]_o/[C]_o \times \text{mol wt (monomer)} + M_{end groups}$ ^{*d*}Calculated from homonuclear decoupled ¹H NMR spectrum.

Entry	Initiator	Monomer	Yield	Time ^a /	$^{b}M_{n}^{obs}/$	$^{c}M_{\rm n}^{\rm theo}/$	$M_{\rm w}/M_{\rm n}$	$P_{\rm r}^{\ d}$
			(%)	min	kgmol ⁻¹	kgmol ⁻¹		
1	1	rac-LA	98	25	6.89	5.76	1.10	0.69
2	2	rac-LA	99	32	6.81	5.76	1.11	0.71
3	3	rac-LA	99	27	6.02	5.76	1.13	0.70
4	4	rac-LA	99	21	6.92	5.76	1.10	0.74
5	5	rac-LA	98	29	7.05	5.76	1.11	0.72
6	6	rac-LA	99	31	6.99	5.76	1.12	0.71
7	7	rac-LA	97	24	6.11	5.76	1.13	0.69
8	8	rac-LA	97	35	7.07	5.76	1.11	0.70
9	9	rac-LA	98	48	7.04	5.76	1.14	0.69
10	1	L-LA	99	17	6.48	5.76	1.11	
11	2	L-LA	99	24	6.59	5.76	1.12	
12	3	L-LA	97	18	7.35	5.76	1.14	
13	4	L-LA	97	28	7.21	5.76	1.13	
14	5	L-LA	99	32	6.78	5.76	1.14	
15	6	L-LA	99	26	7.44	5.76	1.11	
16	7	L-LA	99	37	6.66	5.76	1.12	
17	8	L-LA	98	42	7.34	5.76	1.10	
18	9	L-LA	98	47	7.56	5.76	1.10	
19	1	CL	97	13	6.73	4.56	1.13	
20	2	CL	98	20	5.55	4.56	1.13	
21	3	CL	98	17	5.69	4.56	1.11	
22	4	CL	99	19	7.13	4.56	1.15	
23	5	CL	98	26	6.33	4.56	1.11	
24	6	CL	99	18	7.01	4.56	1.10	
25	7	CL	99	26	6.47	4.56	1.13	
26	8	CL	98	32	7.08	4.56	1.12	
27	9	CL	98	29	6.18	4.56	1.11	

Table Solution polymerization data for *rac*-LA, *L*-LA and CL using **1–9** in the presence of benzyl alcohol in 200:1:5 ratio at 80 $^{\circ}$ C

^{*a*}Time of polymerization measured by quenching the polymerization reaction when all monomer was found consumed. ^{*b*}Measured by GPC at 27 °C in THF relative to polystyrene standards with Mark-Houwink corrections for M_n for LA polymerization. ^{*c*}Mn (theoretical) at 100 % conversion = [M]o/[C]o × mol wt (monomer) + 108.14. ^{*d*}Calculated from homonuclear decoupled ¹H NMR spectrum.

Entry	Initiator	[M]/[C]	Time ^a /min	Yield (%)	$M_{\rm n}^{\ b}/$	$M_{\rm w}/M_{\rm n}$
		ratio			kgmol ⁻¹	
1	3	200	14	99	41.62	1.13
2	3	400	32	98	82.22	1.14
3	3	600	55	97	119.72	1.16
4	3	800	70	99	155.89	1.18
5	3	1000	85	98	212.14	1.20
6	3	1200	140	99	253.67	1.21
7	6	200	18	97	82.52	1.12
8	6	400	35	98	150.79	1.14
9	6	600	62	99	240.25	1.15
10	6	800	81	99	326.74	1.17
11	6	1000	105	98	415.52	1.19
12	6	1200	162	95	499.31	1.22
13	9	200	29	99	41.44	1.18
14	9	400	62	97	83.98	1.20
15	9	600	95	96	128.43	1.23
16	9	800	130	98	160.69	1.25
17	9	1000	165	98	205.52	1.27
18	9	1200	195	97	252.76	1.30

Table Polymerization data based on changing [*rac*-LA]/[C] ratio in case of *rac*-LA using **3**, **6** and **9** at 130 °C

^{*a*}Time of polymerization measured by quenching the polymerization reaction when all monomer was found consumed. ^{*b*}Measured by GPC at 27 °C in THF relative to polystyrene standards with Mark-Houwink corrections for M_n for LA polymerization. [M] = number of moles of monomer, [C] = number of moles of catalyst

Fig. S32. Activity of 4 in different solvent in propylene polymerization

Fig. S33. Plot of activity vs [MAO]/[C] ratio for 1, 4 and 7 for propylene polymerization

Fig. S34. Plot of M_n and M_w/M_n vs. [M]_o/[C]_o for *rac*-LA polymerization at 130 °C using **3**, **6** and **9**

Fig. S35. ¹H NMR spectrum of the crude product obtained from a reaction between *rac*-LA and **6** in 10:1 ratio (x = peaks corresponding to *rac*-LA)

Fig.S36. MALDI-TOF of the crude product obtained from a reaction between *rac*-LA and **6** in 10:1 ratio

Fig. S37. ¹H NMR spectrum of the crude product obtained from a reaction between *rac*-LA and **7** in 10:1 ratio

Fig.S38. MALDI-TOF of the crude product obtained from a reaction between *rac*-LA and **7** in 10:1 ratio

Fig. S39. ¹H NMR spectrum of the crude product obtained from a reaction between *rac*-LA, **4** and BnOH in 10:1:2 ratio

Fig. S40. MALDI-TOF spectrum of the crude product obtained from a reaction between *rac*-LA, **4** and BnOH in 10:1:2 ratio

Fig. S41. Plot of M_n vs. % conversion of monomer

Fig. S42. rac-LA conversion vs. time plot using 3, 6 and 9: [rac-LA]₀/[Cat]₀ = 200 at 130 °C

Fig. S45. ¹H NMR spectrum of the crude product obtained from a reaction between **4** and BnOH in 1:5 ratio

Fig. S46. ¹³C NMR spectrum of the crude product obtained from a reaction between **4** and BnOH in 1:5 ratio