New Journal of Chemistry

Electronic Supplementary Information

Synthesis and biological evaluation of a novel class of $\boldsymbol{\beta}$-carboline derivatives
Hao Chen, Pengchao Gao, Meng Zhang, Wei Liao, Jianwei Zhang*
College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PRC
*Corresponding author. Tel.: 86-10-8391-1522; fax: 86-10-8391-1533;
E-mail: jwzhang2006@163.com

Table of contents
I. Experimental section of dipeptides and tripeptides S2
II. NMR Spectra S12
I. Experimental section of dipeptides and tripeptides

Boc-Trp-Trp-OBzl HOBt $(1.87 \mathrm{~g}, 6.6 \mathrm{mmol})$ and DCC $(1.48 \mathrm{~g}, 7.2 \mathrm{mmol})$ were added to a solution
of Boc-Trp-OH ($2.84 \mathrm{~g}, 7.2 \mathrm{mmol}$) and $\mathrm{HCl} \cdot \operatorname{Trp}-\mathrm{OBzl}(2.17 \mathrm{~g}, 6.6 \mathrm{mmol})$ in anhydrous THF (40 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was adjusted to 8 with N-methylmorpholine. The reaction mixture obtained was kept at $0^{\circ} \mathrm{C}$ for 2 h followed by at room temperature for 24 h . DCU formed was removed by filtration. The filtrate was subject to evaporation under reduced pressure and the residue was dissolved in EtOAc (80 mL). The solution was washed successively with saturated $\mathrm{NaHCO}_{3}, 5 \%$ KHSO_{4} and saturated NaCl , and the organic phase was collected and dried using $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation under reduced pressure, purification of the residue by chromatography (30:1 $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$ provided the title compound as colorless powder ($3.68 \mathrm{~g}, 6.3 \mathrm{mmol}, 96 \%$ yield $) . \mathrm{mp}$ $189-191^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.90(1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{H}), 7.83(1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{H}), 7.67(1 \mathrm{H}, \mathrm{d}, J=7.5$ $\mathrm{Hz}, \mathrm{N}-\mathrm{H}), 7.37-7.12(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.02\left(2 \mathrm{H}, \mathrm{dd}, J_{I}=28.2 \mathrm{~Hz}, J_{2}=12 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.89(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $4.47(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.34-3.06\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.41\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; ESIMS m/z $603(\mathrm{M}+\mathrm{Na})$.

Boc-Trp-Trp-OH At $0^{\circ} \mathrm{C}$ to the solution of Boc-Trp-Trp-OBzl $(1.00 \mathrm{~g}, 1.72 \mathrm{mmol})$ in 10 ml of methanol 3 ml of aqueous $\mathrm{NaOH}(2 \mathrm{M})$ was added to adjust the solution to pH 12 . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , and then was adjusted to pH 5.5 with hydrochloric acid (2 N). After filtration the filtrate was evaporated under reduced pressure. The residue was dissolved in 30 ml of methanol and the solution was filtrated. The filtrate was evaporated under reduced pressure and the residue was solidified in 10 ml of anhydrous ether to provide the title compound as colorless powder ($0.76 \mathrm{~g}, 1.55 \mathrm{mmol}, 90 \%$ yield). mp 200-202 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.22(1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{H}), 8.12$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{H}), 7.62(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 7.40-7.01(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.78(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.50(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH})$, , 3.31-3.09 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $1.42\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; ESIMS $m / z 491(\mathrm{M}+1)$.

Boc-Trp-Trp-Tyr-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp$\operatorname{Trp}(490 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Tos} \cdot \mathrm{Tyr}-\mathrm{OBzl}(487 \mathrm{mg}, 1.1 \mathrm{mmol})$ the title compound was obtained as
colorless powder ($708 \mathrm{mg}, 0.95 \mathrm{mmol}, 95 \%$ yield). $\mathrm{mp} 220-222^{\circ} \mathrm{C}$. ESIMS $m / z 744(\mathrm{M}+1)$.

Boc-Trp-Trp-Glu(OBzl)-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp-Trp (490 mg, 1.0 mmol) and $\operatorname{Tos} \cdot \mathrm{Glu}(\mathrm{OBzl})-\mathrm{OBzl}(549 \mathrm{mg}, 1.1 \mathrm{mmol})$ the title compound was obtained as colorless powder ($471 \mathrm{mg}, 0.59 \mathrm{mmol}, 59 \%$ yield). $\mathrm{mp} 202-204^{\circ} \mathrm{C}$. ESIMS $\mathrm{m} / \mathrm{z} 800$ $(\mathrm{M}+1)$.

Boc-Trp-Trp-Thr-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp$\operatorname{Trp}(490 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Tos} \cdot \mathrm{Thr}-\mathrm{OBzl}(419 \mathrm{mg}, 1.1 \mathrm{mmol})$ the title compound was obtained as colorless powder ($580 \mathrm{mg}, 0.85 \mathrm{mmol}, 85 \%$ yield). $\mathrm{mp} 190-192^{\circ} \mathrm{C}$. ESIMS $m / z 682(\mathrm{M}+1)$.

Boc-Trp-Trp-Lys($\left.N^{\omega}-Z\right)-O B z l$ Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp-Trp ($490 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\operatorname{Tos} \cdot \operatorname{Lys}\left(\mathrm{N}^{\omega}-\mathrm{Z}\right)-\mathrm{OBzl}(596 \mathrm{mg}, 1.1 \mathrm{mmol})$ the title compound was obtained as colorless powder ($829 \mathrm{mg}, 0.98 \mathrm{mmol}, 98 \%$ yield). $\mathrm{mp} 201-203^{\circ} \mathrm{C}$. ESIMS $\mathrm{m} / \mathrm{z} 843$ $(\mathrm{M}+1)$.

Boc-Trp-Trp-Val-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp$\operatorname{Trp}(490 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Tos} \cdot \mathrm{Val}-\mathrm{OBzl}(432 \mathrm{mg}, 1.1 \mathrm{mmol})$ the title compound was obtained as colorless powder ($642 \mathrm{mg}, 0.95 \mathrm{mmol}, 95 \%$ yield). $\mathrm{mp} 210-212^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 8.03$ $(1 \mathrm{H}$, brs, $\mathrm{N}-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.33(14 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.72(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $4.69(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.61(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.43-3.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.01(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $0.77\left(3 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.72\left(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; ESIMS $m / z 680(\mathrm{M}+1)$.

Boc-Trp-Trp-Ile-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp$\operatorname{Trp}(490 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Tos} \cdot \mathrm{Ile}-\mathrm{OBzl}(432 \mathrm{mg}, 1.1 \mathrm{mmol})$ the title compound was obtained as colorless powder ($687 \mathrm{mg}, 0.99 \mathrm{mmol}, 99 \%$ yield). $\mathrm{mp} 212-214^{\circ} \mathrm{C}$. ESIMS $m / z 694(\mathrm{M}+1)$.

Boc-Trp-Trp-Ala-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp-
$\operatorname{Trp}(490 \mathrm{mg}, 1.0 \mathrm{mmol})$ and Tos•Ala-OBzl ($386 \mathrm{mg}, 1.1 \mathrm{mmol}$) the title compound was obtained as colorless powder ($641 \mathrm{mg}, 0.98 \mathrm{mmol}, 98 \%$ yield). $\mathrm{mp} 202-204^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 8.20$ (1H, brs, N-H), 7.99 (1H, brs, N-H), 7.66 ($1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}$, Ar-H), 7.41-7.11 (12H, m, Ar-H), 6.99 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 6.76(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 5.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.70(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.47(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.35(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}), 3.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.31\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.22(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,171.6,170.6,155.5,136.4,136.1,135.6,128.6,128.3,128.1$, $127.5,127.4,123.5,123.3,122.5,122.2,119.9,119.6,118.9,118.5,111.3,111.2,110.2,109.9,80.2$, 66.9, 60.4, 53.6, 48.4, 28.0, 27.5, 27.0, 17.7; ESIMS $m / z 652$ (M+1).

Boc-Trp-Trp-Asp(OBzl)-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp-Trp (490 mg, 1.0 mmol) and $\operatorname{Tos} \cdot \operatorname{Asp}(\mathrm{OBzl})-\mathrm{OBzl}(533 \mathrm{mg}, 1.1 \mathrm{mmol})$ the title compound was obtained as colorless powder ($473 \mathrm{mg}, 0.60 \mathrm{mmol}, 60 \%$ yield). $\mathrm{mp} 208-210^{\circ} \mathrm{C}$. ESIMS $\mathrm{m} / \mathrm{z} 786$ (M+1).

Boc-Trp-Trp-Pro-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp-Trp (490 mg, 1.0 mmol) and Tos $\cdot \operatorname{Pro-OBzl}(266 \mathrm{mg}, 1.1 \mathrm{mmol})$ the title compound was obtained as colorless powder ($654 \mathrm{mg}, 0.96 \mathrm{mmol}, 96 \%$ yield). mp 182-184 ${ }^{\circ} \mathrm{C}$. ESIMS $m / z 678(\mathrm{M}+1)$.

Boc-Trp-Trp-Gly-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp$\operatorname{Trp}(490 \mathrm{mg}, 1.0 \mathrm{mmol})$ and Tos•Gly-OBzl $(371 \mathrm{mg}, 1.1 \mathrm{mmol})$ the title compound was obtained as colorless powder ($414 \mathrm{mg}, 0.65 \mathrm{mmol}, 65 \%$ yield). $\mathrm{mp} 206-208^{\circ} \mathrm{C}$. ESIMS $m / z 638(\mathrm{M}+1)$.

Boc-Trp-Trp-Trp-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp$\operatorname{Trp}(490 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Tos} \cdot \operatorname{Trp}-\mathrm{OBzl}(363 \mathrm{mg}, 1.1 \mathrm{mmol})$ the title compound was obtained as colorless powder ($664 \mathrm{mg}, 0.87 \mathrm{mmol}, 87 \%$ yield). $\mathrm{mp} 180-192^{\circ} \mathrm{C}$. ESIMS $m / z 767(\mathrm{M}+1)$.

Boc-Trp-Trp-Phe-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-

Trp-Trp ($490 \mathrm{mg}, 1.0 \mathrm{mmol}$) and Tos-Phe-OBzl ($470 \mathrm{mg}, 1.1 \mathrm{mmol}$) the title compound was obtained as colorless powder ($682 \mathrm{mg}, 0.94 \mathrm{mmol}, 94 \%$ yield). $\mathrm{mp} 200-202^{\circ} \mathrm{C}$. ESIMS $m / z 638(\mathrm{M}+1)$.

Boc-Trp-Trp-Ser-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp$\operatorname{Trp}(490 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Tos} \cdot \mathrm{Ser}-\mathrm{OBzl}(404 \mathrm{mg}, 1.1 \mathrm{mmol})$ the title compound was obtained as colorless powder ($563 \mathrm{mg}, 0.84 \mathrm{mmol}, 84 \%$ yield). $\mathrm{mp} 195-197^{\circ} \mathrm{C}$. ESIMS $\mathrm{m} / \mathrm{z} 668(\mathrm{M}+1)$.

Boc-Trp-Trp-Met-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-Trp-Trp (490 mg, 1.0 mmol) and Tos•Met-OBzl ($452 \mathrm{mg}, 1.1 \mathrm{mmol}$) the title compound was obtained as colorless powder ($692 \mathrm{mg}, 0.97 \mathrm{mmol}, 97 \%$ yield). $\mathrm{mp} 218-220^{\circ} \mathrm{C}$. ESIMS $m / z 712(\mathrm{M}+1)$.

Boc-Trp-Trp-Leu-OBzl Using the same procedure as described for Boc-Trp-Trp-OBzl from Boc-$\operatorname{Trp}-\operatorname{Trp}(490 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\operatorname{Tos} \cdot \mathrm{Leu}-\mathrm{OBzl}(432 \mathrm{mg}, 1.1 \mathrm{mmol})$ the title compound was obtained as colorless powder ($675 \mathrm{mg}, 0.97 \mathrm{mmol}, 97 \%$ yield). $\mathrm{mp} 206-208^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.26(1 \mathrm{H}, \mathrm{brs}, \mathrm{N}-\mathrm{H}), 8.02(1 \mathrm{H}$, brs, N-H), $7.66(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}$, Ar-H), 7.40-7.11 (12H, m, Ar-H), $6.96(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 6.76(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 5.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.52(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.35$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.54(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.40(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.28\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ; 0.82\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,171.7,170.9,136.4$, $136.1,135.7,128.5,128.3,128.2,127.5,127.4,123.5,123.3,122.5,122.2,119.9,119.6,118.9,118.5$, $111.4,111.2,110.1,109.9,80.2,66.9,60.3,55.4,53.7,51.1,40.9,28.0,27.5,27.0,24.5,22.6,21.9 ;$ ESIMS m/z $694(\mathrm{M}+1)$.

Trp-Trp-Tyr-OBzl To Boc-Trp-Trp-Tyr-OBzl ($500 \mathrm{mg}, 0.67 \mathrm{mmol}$) 7 ml of 4 M solution of hydrochloride in ethyl acetate was added. The reaction mixture was stirred at room temperature for 60 min and TLC (chloroform/methanol, 5:1) indicated the disappearance of Boc-Trp-Trp-Tyr-OBzl. The reaction mixture was evaporated under reduced pressure, the residue was dissolved in 40 ml of ethyl
acetate, the solution was again evaporated under reduced pressure and the residue was washed with anhydrous ether to provide the title compound as colorless powder ($449 \mathrm{mg}, 0.66 \mathrm{mmol} 98 \%$ yield). mp 207-209 ${ }^{\circ} \mathrm{C} .[\alpha] \mathrm{D}^{20}+9.77$ (c 1.1 in MeOH); ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 10.89(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H})$, $8.78(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 8.74(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 7.66(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.51(1 \mathrm{H}$, d, $J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.07(17 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.70(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.90(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $3.04\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 172.6,155.9,142.2,136.7,132.2,130.1,129.0$, 127.7, 127.5, 127.2, 122.9, 122.2, 120.1, 119.2, 119.0, 115.2, 111.3, 111.1, 110.9, 68.6, 54.8, 53.1, 40.6, 31.3, 30.8; ESIMS $m / z 644(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, $70.90 ; \mathrm{H}, 5.79 ; \mathrm{N}, 10.88$. Found: C, 70.69; H, 5.63; N, 11.12.

Trp-Trp-Glu(OBzl)-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Glu(OBzl)-OBzl $(500 \mathrm{mg}, 0.63 \mathrm{mmol})$ the title compound was obtained as colorless powder ($455 \mathrm{mg}, 0.62 \mathrm{mmol}, 99 \%$ yield). $\mathrm{mp} 214-216{ }^{\circ} \mathrm{C} .[\alpha] \mathrm{D}^{20}+20.17$ (c 1.1 in MeOH); ${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}$, DMSO- d_{6}): $\delta 10.93(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 8.77(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 8.73(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 7.64$ $(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.16(18 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.03\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.68(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.82(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.07\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 173.3,172.7,142.5,136.8,130.1,129.0,127.7,127.5,127.2,122.9$, 122.2, 120.1, 119.2, 119.0, 111.3, 111.1, 110.9, 68.6, 54.8, 53.6, 31.3, 30.6, 29.2, 27.8. ESIMS $m / z 700$ $(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{6}$: C, 70.37; H, 5.91; N, 10.01. Found: C, 70.16; H, 5.75; N, 10.24.

Trp-Trp-Thr-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Thr-OBzl ($500 \mathrm{mg}, 0.73 \mathrm{mmol}$) the title compound was obtained as colorless powder $(429 \mathrm{mg}, 0.69$ mmol, 95% yield). mp $195-197{ }^{\circ} \mathrm{C} .[\alpha] \mathrm{D}^{20}+6.10$ (c 1.2 in MeOH); ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta$ $10.97(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 7.32(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.66(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.62(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$,
$3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.15\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 172.9$, $142.3,136.8,130.1,127.7,127.5,127.2,122.9,122.2,120.1,119.2,119.0,111.4,111.1,110.9,71.0$, 68.6, 65.8, 54.6, 31.3, 30.8, 19.2; ESIMS $m / z 582(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, 68.14; H, 6.07; N, 12.04. Found: C, 68.35; H, 6.22; N, 12.25.

Trp-Trp-Lys($\left.N^{\omega}-Z\right)-O B z l$ Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Lys $\left(\mathrm{N}^{\omega}-\mathrm{Z}\right)-\mathrm{OBzl}(500 \mathrm{mg}, 0.59 \mathrm{mmol})$ the title compound was obtained as colorless powder ($459 \mathrm{mg}, 0.58 \mathrm{mmol}, 99 \%$ yield). mp $193-195{ }^{\circ} \mathrm{C} .[\alpha] \mathrm{D}^{20}+14.77$ (c 1.2 in MeOH); ${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}$, DMSO- d_{6}): $\delta 10.99(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 8.97(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 8.66(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 8.26$ $(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 7.78(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.17(18 \mathrm{H}, \mathrm{m}$, Ar-H), $5.01\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.72(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.33(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.04(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.50\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 172.9,156.1,142.2,141.1,136.7,130.1$, $129.3,127.7,127.5,127.2,122.9,122.2,120.1,119.2,119.0,111.3,111.1,110.9,68.6,65.5,54.8,54.1$, 42.2, 34.6, 31.3, 30.5, 29.6; ESIMS $m / z 743$ (M+1); Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{6}$: C, 69.52; H, 6.24; N, 11.31. Found: C, 69.30; H, 6.10; N, 11.54.

Trp-Trp-Val-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Val-OBzl ($500 \mathrm{mg}, 0.74 \mathrm{mmol}$) the title compound was obtained as colorless powder ($440 \mathrm{mg}, 0.72$ mmol, 97% yield). mp $200-202{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+13.43$ (c 1.4 in MeOH); ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}): δ $10.90(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 8.72(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 8.58(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{d}, J=7.9$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.49(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.17$ (13H, m, Ar-H), 5.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.71 ($1 \mathrm{H}, \mathrm{dd}, J_{l}$ $\left.=13.5 \mathrm{~Hz}, J_{2}=5.4 \mathrm{~Hz}, \mathrm{CH}\right), 4.62\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=14.3 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, \mathrm{CH}\right), 3.61(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.17(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 2.07(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 0.90\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 172.9,142.1,136.7$, $130.0,127.7,127.5,127.2,122.9,122.2,120.1,119.2,119.0,111.3,111.1,110.9,68.5,59.7,54.8,33.6$,
31.2, 30.7, 17.4; ESIMS $m / z 580(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 70.45; H, 6.34; $\mathrm{N}, 12.08$. Found: C, 70.26; H, 6.20; N, 11.89.

Trp-Trp-Ile-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Ile-OBzl ($500 \mathrm{mg}, 0.72 \mathrm{mmol}$) the title compound was obtained as colorless powder $(429 \mathrm{mg}, 0.71$ mmol, 99% yield). mp $228-230{ }^{\circ} \mathrm{C} \cdot[\alpha]_{\mathrm{D}}{ }^{20}+17.00$ (c 1.2 in MeOH); ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta$ $10.96(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 8.70(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 8.65(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 7.25(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, $6.82(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 5.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.68(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.47(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.11\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.25(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.83\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 172.9$, $142.1,136.6,130.0,127.8,127.5,127.2,122.8,122.2,120.1,119.2,119.0,111.3,111.1,110.9,68.6$, 57.1, 54.8, 39.5, 31.2, 30.6, 24.9, 14.6, 10.9; ESIMS $m / z 594(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 70.80; H, 6.62; N, 11.80. Found: C, 71.01; H, 6.78; N, 11.58.

Trp-Trp-Ala-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Ala-OBzl ($500 \mathrm{mg}, 0.78 \mathrm{mmol}$) the title compound was obtained as colorless powder $(449 \mathrm{mg}, 0.76$ mmol, 98% yield). mp $205-207{ }^{\circ} \mathrm{C} .[\alpha]{ }_{\mathrm{D}}{ }^{20}+11.03$ (c 1.0 in MeOH); ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}): δ $10.90(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 8.66(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 8.59(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{d}, J=7.8$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.49(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.14(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.66(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.49\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 172.9$, $142.3,136.7,130.1,127.7,127.5,127.2,122.9,122.2,120.1,119.2,119.0,111.3,111.1,110.9,68.5$, 54.6, 48.7, 31.4, 30.7, 20.5; ESIMS m/z 552 (M+1); Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 69.67; H, 6.03; N, 12.70. Found: C, 69.88; H, 6.17; N, 12.91 .

Trp-Trp-Asp(OBzl)-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Asp(OBzl)-OBzl ($500 \mathrm{mg}, 0.64 \mathrm{mmol}$) the title compound was obtained as colorless powder
$\left(450 \mathrm{mg}, 0.63 \mathrm{mmol}, 98 \%\right.$ yield). mp $210-212{ }^{\circ} \mathrm{C} .[\alpha] \mathrm{D}^{20}+10.03$ (c 1.2 in MeOH$) ;{ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}$, DMSO- d_{6}): $\delta 10.98(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 8.77(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 7.30$ ($20 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $5.08\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.65(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.17\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.92$ (2H, m, CH_{2}); ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ 173.4, 172.9, 142.3, 141.1, 136.8, 130.2, $129.1,127.8,127.6,127.3,122.9,122.2,120.1,119.2,119.0,111.3,111.1,110.9,68.7,54.5,49.3,41.0$, 31.3, 30.2; ESIMS $m / z 686(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{6}$: C, 70.06 ; $\mathrm{H}, 5.73 ; \mathrm{N}, 10.21$. Found: C, 70.25; H, 5.90; N, 10.43.

Trp-Trp-Pro-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Pro-OBzl ($500 \mathrm{mg}, 0.74 \mathrm{mmol}$) the title compound was obtained as colorless powder $(451 \mathrm{mg}, 0.73$ mmol, 99% yield). mp $182-184^{\circ} \mathrm{C} .[\alpha] \mathrm{D}^{20}+16.73$ (c 1.3 in MeOH); ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}): δ $10.92(1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{H}), 10.87(1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{H}), 8.73(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{d}$, $J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.18(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.66(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.08(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $3.16\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.79\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ 172.7, 142.2, 136.6, 130.1, $127.8,127.5,127.2,122.9,122.2,120.1,119.2,119.0,111.3,111.1,110.9,68.7,60.5,54.8,45.7,32.3$, 31.2, 30.6, 24.9; ESIMS $m / z 578(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{4}: \mathrm{C}, 70.69 ; \mathrm{H}, 6.11 ; \mathrm{N}, 12.12$, Found: C, 70.90; H, 6.27; N, 12.34.

Trp-Trp-Gly-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Gly-OBzl ($500 \mathrm{mg}, 0.79 \mathrm{mmol}$) the title compound was obtained as colorless powder $(446 \mathrm{mg}, 0.78$ mmol, 99% yield). mp 201-203 ${ }^{\circ} \mathrm{C} .[\alpha]{ }_{\mathrm{D}}{ }^{20}+8.23$ (c 1.2 in MeOH); ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}): δ $10.96(1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{H}), 10.90(1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{H}), 8.80(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 8.67(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H})$, $7.60(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.52(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.17(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.05(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.70(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.16\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 172.9,142.2,136.7$,
$130.2,127.7,127.5,127.2,122.9,122.2,120.1,119.2,119.0,111.3,111.1,110.9,68.5,54.6,48.8,43.1$, 31.4, 30.6; ESIMS $m / z 538(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 69.26; H, 5.81; N, 13.30. Found: C, 69.27; H, 5.95; N, 13.52.

Trp-Trp-Trp-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Trp-OBzl ($500 \mathrm{mg}, 0.65 \mathrm{mmol}$) the title compound was obtained as colorless powder $(416 \mathrm{mg}, 0.59$ mmol, 91% yield). mp 212-214 ${ }^{\circ} \mathrm{C} .[\alpha] \mathrm{D}^{20}+6.73$ (c 1.2 in MeOH); ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}): δ $11.10(3 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 8.03(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 7.39(20 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.57\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.43(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 172.8,142.2,136.7,136.3,130.1,127.7,127.5,127.2,122.9$, 122.2, 120.1, 119.2, 119.0, 111.3, 111.1, 110.9, 68.5, 55.0, 54.7, 34.1, 31.3, 30.7; ESIMS $m / z 667$ (M+1); Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{4}$: C, 72.05; H, 5.74; N, 12.60. Found: C, 71.86; H, 5.60; N, 12.82. Trp-Trp-Phe-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Phe-OBzl ($500 \mathrm{mg}, 0.69 \mathrm{mmol}$) the title compound was obtained as colorless powder ($432 \mathrm{mg}, 0.67$ mmol, 97% yield). $\mathrm{mp} 199-201{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+11.23$ (c 1.1 in MeOH); ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}): δ $10.98(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 8.98(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 8.82(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{d}, J=7.9$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.53(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.19(18 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.68(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 4.41(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.10\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 172.9,142.2,139.6,136.7$, $130.0,128.6,127.8,127.5,127.2,126.1,122.9,122.2,120.1,119.2,119.0,111.3,111.1,110.9,68.6$, 54.6, 53.7, 40.6, 31.2, 30.6; ESIMS m/z $628(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 72.71; H, 5.94; N, 11.16. Found: C, 72.50; H, 5.80; N, 11.39 .

Trp-Trp-Ser-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Ser-OBzl ($500 \mathrm{mg}, 0.75 \mathrm{mmol}$) the title compound was obtained as colorless powder $(440 \mathrm{mg}, 0.73$ $\mathrm{mmol}, 97 \%$ yield). $\mathrm{mp} 218-220^{\circ} \mathrm{C} .[\alpha] \mathrm{D}^{20}+25.37$ (c 1.3 in MeOH); ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right.$): δ
$10.93(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 8.72(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 7.28(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.61(2 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $4.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.46(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 172.7$, $142.1,136.8,130.1,127.6,127.5,127.1,122.9,122.2,120.1,119.2,119.0,111.4,111.1,110.9,68.6$, 64.1, 56.8, 54.7, 31.4, 30.6; ESIMS m/z 568 (M+1); Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, 67.71; H, 5.86; N, 12.34. Found: C, 67.50; H, 5.71; N, 12.11.

Trp-Trp-Met-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Met-OBzl ($500 \mathrm{mg}, 0.70 \mathrm{mmol}$) the title compound was obtained as colorless powder ($448 \mathrm{mg}, 0.69$ mmol, 98% yield). $\mathrm{mp} 215-217{ }^{\circ} \mathrm{C} .[\alpha] \mathrm{D}^{20}+7.77$ (c 1.4 in MeOH); ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}): δ $10.96(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 8.79(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 8.71(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{d}, J=7.8$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.67(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.19(13 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.71\left(1 \mathrm{H}, \mathrm{dd}, J_{l}\right.$ $\left.=14.2 \mathrm{~Hz}, J_{2}=7.3 \mathrm{~Hz}, \mathrm{CH}\right), 4.63\left(1 \mathrm{H}, \mathrm{dd}, J_{I}=14.2 \mathrm{~Hz}, J_{2}=7.3 \mathrm{~Hz}, \mathrm{CH}\right), 3.19\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}, \mathrm{CH}_{2}\right), 2.03$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.62\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 172.9,142.0,136.9,130.2,127.7$, $127.5,127.2,122.9,122.2,120.1,119.2,119.0,111.3,111.1,110.8,68.6,54.9,53.2,34.5,31.4,30.6$, 29.5, 17.8; ESIMS m/z $612(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 66.75 ; \mathrm{H}, 6.10 ; \mathrm{N}, 11.45$. Found: C, 66.94; H, 6.25; N, 11.23.

Trp-Trp-Leu-OBzl Using the same procedure as described for Trp-Trp-Tyr-OBzl from Boc-Trp-Trp-Leu-OBzl ($500 \mathrm{mg}, 0.72 \mathrm{mmol}$) the title compound was obtained as colorless powder $(450 \mathrm{mg}, 0.71$ mmol, 99% yield). mp $222-224{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+15.76$ (c 1.3 in MeOH); ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta$ $10.92(2 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{H}), 8.76(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 8.71(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{d}, J=7.9$ Hz, Ar-H), $7.50(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.16(13 \mathrm{H}, \mathrm{m}, ~ \mathrm{Ar}-\mathrm{H}), 6.85(2 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{H}), 5.02(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.63(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.15\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.59(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $0.89\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 172.9,142.2,136.8,130.1,127.8,127.5,127.1$,
$122.9,122.2,120.1,119.2,119.0,111.3,111.1,110.9,68.6,54.8,51.3,43.6,31.3,30.6,22.6,22.0$;

ESIMS $m / z 594(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, $70.80 ; \mathrm{H}, 6.62$; N, 11.80. Found: C, 70.98; H, 6.77; N, 12.03.
II. NMR Spectra

Figure S1 $\quad{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S2 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S3 $\quad{ }^{1} \mathrm{H}$ NMR spectrum of compound 7 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S4 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of compound 7 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S5 $\quad{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8}$ in DMSO- d_{6} recorded at $25^{\circ} \mathrm{C}$

Figure S6 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S7 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 9 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S8 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of compound 9 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S9 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S10 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S11 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 11 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S12 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 1}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S13 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 2}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S14 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 2}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S16 HMQC spectrum of compound $\mathbf{1 2}$ in DMSO- d_{6} recorded at $25^{\circ} \mathrm{C}$

Figure S18 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 3}$ in DMSO- d_{6} recorded at $25^{\circ} \mathrm{C}$

Figure S19 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 3}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S20 $\quad{ }^{1} \mathrm{H}$ NMR spectrum of compound 14 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S21 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 4}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S22 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 5}$ in DMSO- d_{6} recorded at $25^{\circ} \mathrm{C}$

Figure S23 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 5}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S24 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 6}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S25 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 6}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S26 ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 7}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S27 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 7}$ in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S28 $\quad{ }^{1} \mathrm{H}$ NMR spectrum of compound 18 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S29 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 18 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S30 $\quad{ }^{1} \mathrm{H}$ NMR spectrum of compound 19 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S31 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of compound 19 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S32 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 20 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S33 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of compound 20 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S34 ${ }^{1} \mathrm{H}$ NMR spectrum of compound 21 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

Figure S35 ${ }^{13} \mathrm{C}$ NMR spectrum of compound 21 in DMSO- d_{6} recorded at $25{ }^{\circ} \mathrm{C}$

