Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting information

Effect of pyridyl substituents on dithiocarbamates leading to the formation of green luminescent mercury(II) coordination polymers, zinc(II) dimers and a monomer

Vikram Singh,^a Vinod Kumar,^a Ajit N. Gupta,^a Michael. G. B. Drew^b and Nanhai Singh*^a

^aDepartment of Chemistry, Faculty of Science, Banaras Hindu University

Varanasi 221005 (India)

^bDepartment of Chemistry, The University of Reading, Whiteknights, Reading, RG6 6AD, U.K.

Scheme S1. General methodology for the synthesis of compounds (1-10).

2.718 Å 1.994 Å

Figure S2. Solvate methanol stabilizing 1-D layer structure via O-H…N and C-H…O hydrogen bonding connecting Hg…S dimeric units in **5**.

Figure S3. Emission spectra of the complexes in CH_2Cl_2 solution when excited at λ_{ex} 280 nm.

Table S1

Dimensions (distances, Å angles, deg) in the metal coordination spheres.

Structures 1, 2, 3

	1	2	3
Hg-S11	2.658(2)	2.507(2)	2.479(1)
Hg-S13	2.513(2)	2.836(3)	2.820(1)
Hg-S41	2.389(2)	2.605(2)	
Hg-S43	3.112(2)	2.657(3)	
Hg-N6*	2.544(7)	2.586(5)	2.646(4)
S11-Hg-S13	69.89(7)	67.11(6)	67.95(4)
S41-Hg-S43	64.46(6)	68.20(6)	
S11-Hg-S43	98.10(7)	116.88(7)	
S13-Hg-S43	161.62(7)	172.10(6)	
S11-Hg-S41	132.40(7)	167.93(7)	
S13-Hg-S41	149.35(8)	106.54(6)	
S11-Hg-N6*	86.66(16)	92.81(13)	89.65(12)
S13-Hg-N6*	102.85(17)	87.91(14)	83.08(10)
S41-Hg-N6*	99.64(16)	97.27(13)	
S43-Hg-N6*	82.47(16)	98.48(13)	

* N6 = N66 (x, 1/2-y, z-1/2) in **1**, N65 (x,y-1,z) in **2**, N65 (1.5-x, y+1/2, -z-1/2) in **3**.

Table S2

Structure 4

Hg(1)-S(11) 2.410(5)	Hg(2)-S(71) 2.432(4)
Hg(1)-S(41) 2.825(5)	Hg(2)-S(13) 2.904(4)
Hg(1)-S(13) 3.006(5)	Hg(2)-S(103) \$1 3.009(5)
Hg(1)-S(43) 2.429(4)	Hg(2)-S(101) \$1 2.423(5)
Hg(1)-S(103) 2.916(5)	Hg(2)-S(73) 2.828(5)
S(11)-Hg(1)-S(43) 167.84(17)	S(11)-Hg(1)-S(41) 116.31(16)
S(43)-Hg(1)-S(41) 68.71(14)	S(11)-Hg(1)-S(103) 94.47(15)
S(43)-Hg(1)-S(103) 95.44(15)	S(41) – Hg(1) - S(103) 100.15(14)
S(11) - Hg(1) - S(13) 65.95(15)	S(43) – Hg(1) - S(13) 102.36(15)
S(103) – Hg(1) - S(13) 126.39(12)	S(41)-Hg(1)-S(13) 133.49(14)
S(101)\$1- Hg(2) – S(73) 117.81(16)	S(71) - Hg(2) - S(73) 68.37(14)
S(101)\$1 - Hg2- S(13) 94.15(14)	S(71)-Hg(2)-S(13) 95.76(14)
S(73)-Hg(2)-S(13) 98.34(15)	S(101)\$1- Hg2 - S(103)\$1 65.71(13)
S(71) - Hg2- S(103)\$1 101.88(14)	S(73) - Hg2 - S(103)\$1 133.13(14)
S(13) - Hg2 - S(103)\$1 126.39(12)	S(101)\$1- Hg(2) – S(71) 167.38(15)
Symmetry element \$1 = 1+x,y,z	

Table S3

Structure 5

Hg(1) - C(41) 2.127(14)	Hg(1)- S(11) 2.389(4)
Hg(1)- S(13) 3.020(5)	Hg(1) - S(13)\$1 3.191(4)
Hg(1) - O(1) 3.26(2)	C(41)- Hg(1)- S(11) 174.2(4)
C(41)- Hg(1)- S(13) 115.7(4)	C(41) - Hg(1) - S(13) 92.1(4)
C(41) - Hg(1) - O(1) 95.0(5)	S(11)- Hg(1)- S(13) 66.1(1)
S(11) - Hg(1) - S(13)\$1 92.9(2)	S(11) - Hg(1) - O(1) 81.5(3)
S(13) - Hg(1) - S(13)\$1 102.3(1)	S(13) - Hg(1) - O(1) 143.1(3)
S(13)\$1-Hg(1) - O(1)\$1 96.2(3)	

\$1 Symmetry element \$1 1-x, -y, -z

Table S4

Structure 6

Hg(1) - S(11)	2.399(2)	S(11) - Hg(1) - S(13) 66.9(1)
Hg(1) - S(13)	2.952(2)	S(11) - Hg(1) - S(13)\$1 89.5(1)
Hg(1) - S(13)\$1	3.218(2)	S(13) - Hg(1) - S(13)\$1 83.2(1)
\$1 Symmetry elem	nent x,-1+y,z	

Table S5Structure 8

Zn(1)- N(37)\$1 2.080(5)	Zn(1)-S(13) 2.404(2)
Zn(1)- S(11) 2.504(2)	Zn(1)-S(43) 2.521(2)
Zn(1)-S(41) 2.420(2)	
N(37)\$1- Zn(1)- S(13) 107.06(17)	N(37)\$1- Zn(1)- S(41) 110.07(18)
S(13) - Zn(1)- S(41) 142.87(8)	N(37)\$1- Zn(1)- S(11) 104.18(16)
S(13) - Zn(1)- S(11) 73.25(7)	S(41) - Zn(1)- S(11) 97.91(8)
N(37)\$1- Zn(1)- S(43) 101.17(17)	S(13) - Zn(1)- S(43) 99.81(8)
S(41) - Zn(1)- S(43) 72.61(8)	S(11) - Zn(1)- S(43) 154.65(7)
\$1 Symmetry element 1-x, 1-y, 1-z	

Table S6

Structure 9

Zn(1)- S(13) 2.340(1)	Zn(1)- S(41) 2.340(1)
Zn(1)- S(43)\$1 2.375(1)	Zn(1)- S(11) 2.448(1)
Zn(1)- S(43) 2.814(1)	S(13)- Zn(1)-S(41) 134.3(1)
S(13)- Zn(1)-S(43)\$1 117.9(1)	S(41)- Zn(1)-S(43)\$1 104.8(1)
S(13)- Zn(1)-S(11) 75.8(1)	S(41)- Zn(1)-S(11)107.1(1)
S(11)- Zn(1)-S(43)\$1 107.6(1)	S(13)- Zn(1)-S(43) 95.5(1)
S(41)- Zn(1)-S(43) 69.3(1)	S(43)- Zn(1)-S(43)\$1 88.2(1)
S(11)- Zn(1)-S(43) 164.1(1)	
\$1 Symmetry element 1-x, 1-y, 1-z	

Table S7Structure 10

Zn(1)- S(11) 2.334(2)	Zn(1)- S(41) 2.337(2)
Zn(1)- S(13) 2.350(2)	Zn(1)- S(43) 2.366(2)
S(11)- Zn1 - S(41) 129.7(1)	S(11)- Zn1 - S(13) 77.7(1)
S(41)- Zn1 - S(13) 123.1(1)	S(11)- Zn1 - S(43) 127.3(1)
S(41)- Zn1 - S(43)77.5(1)	S(13)- Zn1 - S(43) 129.6(1)

 Table S8. Solvent assisted hydrogen bonding parameters in structures 5 and 8.

	D-H···A	D-H/ Å	H····A/Å	D…A/Å	D-H···A/°	Symmetry elements
5	C(31)-H(31B)····O(1)	0.96	2.72	3.65(1)	161	x, 1+y, z
	O(1)-H(1)···N(35)	0.82	2.01	2.81(1)	165	1-x, 2-y, -z
8	C(64)-H(64)····O(91)	0.93	2.38	3.21(1)	149	

complexes	λ _{max}	λ _{max}	λ _{max}	Quantum	Stoke's Shift (cm ⁻¹)		
	excitation	emission	emission (Solid) nm	Φ	Solution	Solid	
	(1111)	nm					
1	283	326	455	0.120	4660	13360	
2	257	369	424	0.142	11810	15325	
3	255	377	470	0.173	12690	17939	
4	256	334	354	0.132	9122	10813	
5	266	330	384	0.119	7290	11552	
6	259	342	355	0.131	9370	10441	
8	266	338	363	0.139	8008	10045	
9	266	366	397	0.141	10271	12405	
Solution Quantum yield of the complexes were recorded as pyridyl-2-amine (0.1 M H ₂ SO ₄ ,							

 Table S9. Photophysical data of the complexes 1-9.

quantum yield 0.6) as reference.

Synthesis of Complexes

 $[Hg(L)_2]$ [L = L1 (1), L2 (2), L3 (3), L4 (4), L5, 6]

To a 10 mL methanolic solution of KL1 (0.356 g, 1 mmol), KL2 (0.236 g, 1 mmol), KL3 (0.302 g, 1 mmol), or KL4 (0.326 g, 1 mmol) was added slowly a (5 mL) solution of $Hg(CO_2CH_3)_2$ (0.159 g, 0.5 mmol) in the same solvent mixture. The reaction mixture was allowed to stir for 2 h yielding yellow to yellowish coloured precipitate. In each case the solid product thus formed was filtered off washed with methanol followed by diethylether. The compound was recrystallized in dichloromethane-methanol (70:30) solvent mixture. Yellowish crystals were obtained.

$\left[C_{6}H_{5}Hg(L3)\right](5)$

The orange compound **5** was synthesized and isolated adopting the method described for **1-6**, but using KL3 (0.302 g, 1 mmol) and $C_6H_5Hg(CO_2CH_3)_2$ (0.337 g, 1 mmol). Yellowish crystals were obtained.

2-Benzyl-2H-imidazo[1,5-a] pyridine-3-thione (C₁₄H₁₂N₂S) (7)

To a 5 mL methanolic solution of the ligand KL6, Potassium benzyl(pyridin-2-ylmethyl) dithiocarbamate (0.312 g, 1 mmol) was added slowly a 5 mL solution of the $Hg(CO_2CH_3)_2$ (0.159 g, 0.5 mmol) in the same solvent. The reaction mixture was stirred which produced the light blue solution along with the formation of black HgS, which was filtered off and the filtrate was kept for crystallization in methanol-dichloromethane mixture (1:1). Light blue coloured crystals were obtained.

Characterization details

(1) Yellow green solid, yield: 0.303 g, 72%. m.p. 180-184 °C. Elemental analysis calcd (%) for $C_{30}H_{26}O_4N_4S_4Hg$: C 43.13, H 3.13, N 6.70; found(%): C 42.85, H 3.18, N 6.42. ¹H NMR (300.40 MHz, CDCl₃, ppm): δ 8.60-8.51 (m, 4H, -C₅H₄N), 7.36-7.32 (m, 4H, C₅H₄N), 6.82-6.74 (s, 6H, C₆H₃CH₂O₂), 5.99 (s, 4H, -CH₂C₆H₃O₂), 5.01-4.91 (s, 4H, -CH₂C₆H₃CH₂O₂, -CH₂C₅H₄N), ¹³C{¹H} NMR (75.45 MHz, CDCl₃, ppm): δ 206.7 (CS₂), 149.12, 149.05, 148.97 (NC₅H₄), 135.07, 129.95, 127.30, 123.30, 121.15 (-C₆H₃CH₂O₂), 107.97 (-CH₂C₆H₃CH₂O₂), 58.12 (-CH₂C₅H₄N), 54.66 (-CH₂C₇H₅O₂). IR (KBr, cm⁻¹): 1370 v(C=N), 1039, 972 v(C-S). UV-vis.(CH₂Cl₂, λ_{max} , nm, 10⁴ ϵ / M⁻¹cm⁻¹): 283 (1.63).

(2) Yellow solid, yield: 0.225 g, 76 %. m.p. 170-174 °C. Elemental analysis calcd (%) for C₁₆H₁₈N₄S₄Hg: C 32.29, H 3.05, N 9.42; found(%): C 32.15, H 2.94, N 9.37. ¹H NMR (300.40 MHz, CDCl₃, ppm): δ 8.63-8.57 (s, 4H, C₅H₄N), 7.25 (s, 3H, C₅H₄N), 5.07 (s, 2H, -CH₂C₅H₄N), 3.39 (s, 6H, -CH₃), ¹³C{¹H} NMR (75.45 MHz, CDCl₃, ppm): δ 205.7 (CS₂), 149.8, 149.3 (NC₅H₄), 58.0 (-CH₂C₅H₄N), 52.0 (-CH₃). IR (KBr, cm⁻¹): 1390 υ(C=N), 1026, 969 υ(C-S). UV-vis. (CH₂Cl₂, λ_{max}, nm, 10⁴ ε/ M⁻¹cm⁻¹): 275 (1.12), 258 (1.42).

(3) Yellow solid, yield: 0.295 g, 81%. m.p. 182-186 °C. Elemental analysis calcd (%) for $C_{24}H_{22}N_4O_2S_4Hg$: C 39.63, H 3.05, N 7.70; found(%): C 39.52, H 2.94, N 7.55. ¹H NMR (300.40 MHz, CDCl₃, ppm): δ 8.63-8.59 (s, 4H, C₅H₄N), 7.85-7.25 (s, 4H, C₅H₄N), 7.41 (d, 2H, C₄H₃O), 6.30 (m, 4H, C₄H₃O), 5.29-5.08 (s, 2H, -CH₂C₅H₄N, -CH₂C₄H₃O), ¹³C{¹H} NMR (75.45 MHz, CDCl₃, ppm): δ 202.1 (CS₂), 149.6, 149.5 (NC₅H₄), 141.4 (-C₄H₃O), 137.6, 137.0, 134.4 (C₅H₄N), 129.0, 128.8, 128.7, 128.5, 128.4, 128.3, 127.8, 122.2 (-C₆H₅), 56.0 (-CH₂C₅H₄N), 54.0 (-CH₂C₄H₃O). IR (KBr, cm⁻¹): 1415 ν (C=N), 1065, 932, ν (C-S). UV-vis.(CH₂Cl₂, λ_{max} , nm, 10⁴ ϵ / M⁻¹cm⁻¹): 280(1.06), 252(1.42).

(4) Light yellow solid yield: 0.290 g, 76 %. m.p. 194-198 °C. Elemental analysis calcd (%) for $C_{30}H_{30}N_4S_4Hg$: C 46.46, H 3.89, N 7.52; found(%): C 46.28, H 3.84, N 7.95. ¹H NMR (300.40 MHz, CDCl₃, ppm): δ 8.59-8.50 (d, 4H, C₅H₄N), 7.81-7.78 (m, 4H, C₅H₄N), 7.19 (m, 10H,-C₆H₅), 5.26 (s, 4H, -CH₂C₄H₃O), 4.90 (s, 4H, -CH₂C₅H₄N), 3.92-3.87, 3.14-3.09 (t, t, -CH₂-CH₂-C₆H₅). ¹³C{¹H} NMR (75.45 MHz, CDCl₃, ppm): δ 206.57 (CS₂), 149.80-149.08 (-C₅H₄N), 137.63-135.45 (-C₅H₄N), 137.63-123.79 (-C₆H₅), 57.59 (-CH₂C₅H₄N), 58.4-58.1 (-CH₂CH₂C₆H₅). IR (KBr, cm⁻¹): 1422 v(C=N), 1084, 1026 v(C-S). UV-vis.(CH₂Cl₂, λ_{max} , nm, 10⁴ ϵ / M⁻¹cm⁻¹): 290(1.18), 251(1.41).

(5) Orange solid, yield: 0.225 g, 83 %. m.p. 162-166 °C. Elemental analysis calcd (%) for C₁₈H₁₆N₂OS₂Hg: C 39.96, H 2.98, N 5.18; found(%): C 39.82, H 2.86, N 5.08; ¹H NMR (300.40 MHz, CDCl₃, ppm): δ 8.63-8.57 (s, 4H, C₃H₄N), 7.85-7.67 (s, 4H, C₃H₄N), 7.41 (m, 10H, -C₆H₅), 6.30 (m, 6H, C₄H₃O), 5.27 (s, 4H, -CH₂C₅H₄N), 5.07 (-CH₂C₄H₃O). 2.35(-CH₃), 3.51(-CH₃OH). ¹³C{¹H} NMR (75.45 MHz, CDCl₃, ppm): δ 204.1 (CS₂), 149.73, 149.08, (NC₅H₄), 141.4 (-C₄H₃O), 137.6, 137.0,

134.4 (C₅H₄N), 129.0, 128.8, 128.7, 128.5, 128.4, 128.3, 127.8, 122.2 (-C₆H₅), 56.0, 54.0 (-CH₂C₅H₄N, -CH₂C₄H₃O). IR (KBr, cm⁻¹): 1419 υ(C=N), 1064, 956 υ(C-S), 460 υ(C-Hg). UV-vis.(CH₂Cl₂, λ_{max}, nm, 10⁴ ε/ M⁻¹cm⁻¹): 280(1.41), 266(1.64).

(6) Yellow solid, Yield: 0.298 g, 80 % yield, m.p. 140-142 °C. Elemental analysis calc(%) for $C_{28}H_{26}N_4S_4Hg$: C, 45.00 ; H, 3.51; N, 7.50; found(%): C, 44.88; H, 3.38; N, 7.37; ¹H NMR(300.40 MHz, CDCl₃, ppm): δ 8.32 (m, 4H, C₅H₅N), δ 7.27-7.16 (m, 10 H, -C₆H₅), δ 7.36 (m, 4H, C₅H₄N), δ 5.09 (s, 4H, -CH₂Ar), δ 5.02 (s, 4H, -CH₂C₆H₅). ¹³C NMR (75.45 MHz CDCl₃): δ 205.60 (CS₂), 149.56, 142.32, 136.23, 135.38 (NC₅H₄), 127.45, 126.32, 124.65, 122.09 (-C₆H₅), 59.67 (-CH₂C₅H₄N), 57.69 (-CH₂Ar). IR (KBr, cm⁻¹): 1420 v(C=N), 1028 and 1076 v(C-S). λ_{max} , nm, 10⁴ ϵ / M⁻¹cm⁻¹): 301(1.04), 258 (1.51).

(7) Light bluish solid, Yield: 0.199 g, 82 %. m.p. 172-174 °C. Elemental analysis calc(%) for $C_{14}H_{12}N_2S$: C, 69.98; H, 5.04; N, 11.67; found(%): C, 69.85; H, 4.95; N, 11.75. ¹H NMR (300.40 MHz, CDCl₃, ppm): δ 8.33 (d, ¹H, C₅H₄N), δ 7.35-7.25 (m, 3H, -C₆H₅), 7.36 (m, 4H, C₅H₄N), 5.52 (s, 2H, - CH₂Ar). ¹³C{¹H} NMR (75.45 MHz, CDCl₃): δ 205.60 (CS₂), 149.56, 142.32, 136.23, 135.38 (NC₅H₄), 127.45, 126.32, 124.65, 122.09 (-C₆H₅), δ 57.69 (-CH₂Ar). IR (KBr, cm⁻¹): 1420 v(C=N), 1028 and 1076 v(C-S),

 $[Zn(L)_2], [L = L5 (8), L7 (9), L8 (10)]$

To a 10 mL stirred methanolic solution of the ligand KL5 (0.315 g, 1 mmol), KL7 (0.256 g, 1 mmol), or KL8 (0.314 g, 1 mmol) was added separately a 5 mL solution of $Zn(CO_2CH_3)_2 \cdot 2H_2O$ (0.110 g, 0.05 mmol) in the same solvent. The reaction mixture was stirred for 6 h yielding white precipitate. In each case the solid product thus formed was washed thrice with methanol and diethylether. The compound was recrystallized in dichloromethane/ ethanol (70:30, v/v) mixture.

(8) Pale yellow solid, yield: 0.256 g, 83 %. m.p. 180-184 °C. Elemental analysis calcd (%) for C₅₆H₅₂N₈S₈Zn₂: C 55.04, H 4.30, N 9.18; found(%): C 54.92, H 4.18, N 9.08. ¹H NMR (300.40 MHz,

CDCl₃, ppm): δ 8.92-8.84 (d, 4H, C₅H₄N), 7.79-7.42 (m, 4H, C₅H₄N), 7.25-6.77 (m, 10H, -C₆H₅), 5.26 (s, 4H, -CH₂C₅H₄N), 5.13 (s, 4H, -CH₂C₆H₅). ¹³C{¹H} NMR (75.45 MHz, CDCl₃, ppm): δ 204.12 (CS₂), 148.63-147.51 (-C₅H₄N), 137.40 (-C₅H₄N), 121.89 (-C₆H₅), 56.79 (-CH₂C₅H₄N), 43.87 (-CH₂C₆H₆); IR (KBr, cm⁻¹): 1432 v(C=N), 1049, 940 v(C-S); UV-vis. (CH₂Cl₂, λ_{max} , nm, 10⁴ ε/ M⁻¹cm⁻¹): 285(1.18), 266(1.37).

(9) White solid, yield: 0.213 g, 84 %, m.p. 165-170 °C. Elemental analysis calcd (%) for C₃₆H₅₆N₄S₈O₈Zn₂: C 40.91, H 5.32, N 5.29; found(%): C 40.8, H 5.24, N 5.12. ¹H NMR (300.40 MHz, CDCl₃, ppm): δ 1.29-1.24 (t, 6H, CH₃), 1.90-1.82 (m, 2H, -CH-(CH₂)₄N). ¹³C{¹H} NMR (75.45 MHz, CDCl₃, ppm): δ 202.32 (CS₂), 65.13, 70.12 (-CH₂), 55 (-OCH₂), 35 (-CH₃). IR (KBr, cm⁻¹): 1435 υ(C=N), 1067-945 υ(C-S). UV-vis.(CH₂Cl₂, λ_{max}, nm, 10⁴ ε/ M⁻¹cm⁻¹): 266(1.54).

(10) White solid, yield: 0.240 g, 77 %, m.p. 142-146 °C. Elemental analysis calcd (%) for $C_{28}H_{30}N_4S_4Zn$: C 54.58, H 4.91, N 9.09; found(%): C 54.47, H 4.84, N 9.17. ¹H NMR (300.40 MHz, CDCl₃, ppm): δ 7.39-7.29 (m, 10H, C₆H₅), 6.08-6.07 (m, 6H, -C₄H₃NCH₃), 5.29 (s, 4H-CH₂C₄H₃NCH₃), 5.03 (s, 4H, -CH₂C₆H₅,), 3.61 (s, 6H, -CH₃C₄H₃N), ¹³C NMR (300.40 MHz, CDCl₃, ppm): δ 205.1 (CS₂), 134.7-124.2 (C₆H₅), 111.8-107.4 (C₄H₃NCH₃), 54.2 (-CH₂C₆H₅), 48.4 (-CH₂C₄H₃NCH₃), IR (KBr, cm⁻¹): 1430 v(C=N), 1072, 978 v(C-S). UV-vis.(CH₂Cl₂, λ_{max} , nm, 10⁴ ϵ /M⁻¹cm⁻¹): 285(1.45).

IR Spectra of KL1

IR Spectra of 2

IR Spectra of KL2

IR Spectra of KL3

IR Spectra of 8

IR Spectra of KL5

IR Spectra of 10

