Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supplementary Material for New Journal of Chemistry-2014

Influence of ligand environment on the structure and properties of silver (I) dithiocarbamate cluster-based coordination polymers and dimmers

Vinod Kumar,^a Vikram Singh,^a Ajit N. Gupta,^a Krishna K. Manar,^a Lal Bahadur Prasad,^a Michael G. B. Drew^b and Nanhai Singh^{*a}

^aDepartment of Chemistry, Faculty of Science, Banaras HinduUniversity, Varanasi 221005, India

^bDepartment of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK.

Supporting information

Table of contents

	Pages	SI
(1) Structure of 2 and 3	S2	Fig. S1
(2) Emission spectra of 1-4 in the solid phase	S2	Fig. S2
(3) Selected Bond Lengths and Angles for 3 and 4 .	S2	Table 1
(4) UV-Vis. spectra of 1–4 in solution	S3	Fig. S3
(5) Emission spectra of (1-4) in solution	S3	Fig. S4
(6) Solid phase UV-Vis. spectra of 1 and 3	S4	Fig. S5
(7) Pyrolysis and TGA results for the complexes	S4	Table S2
(8) Thermogravimetric (TG) trace of 1	S5	Fig. S6
(9) Thermogravimetric (TG) trace of 3	S5	Fig. S7
(10) ^{31} P NMR spectra of complexes 3 and 4	S 6	Fig. S8

Fig. S1 Structure of 2 and 3 with ellipsoids at 30, 50% probability respectively.

Fig. S2 Emission spectra of 1-4 (λ_{ex} \sim 320 and 300 nm) in the solid phase.

Table S1. Selected Bond Lengths (Å) and Angles (°) for complexes 3 and 4.

	3	4
Ag(1)-P(1)	2.4224(11)	2.4126(10)
Ag(1)-S(11)	2.6187(12)	2.6280(11)
Ag(1)-S(13)\$1	2.6669(9)	2.6830(10)
Ag(1)-S(13)	2.7577(10)	2.7227(11)
Ag(1)-Ag(1)\$1	3.0104(6)	3.0035(6)
P(1)-Ag(1)-S(11)	130.52(4)	130.80(4)
P(1)-Ag(1)-S(13)\$1	117.24(4)	117.38(4)
S(11)-Ag(1)-S(13)\$1	103.65(3)	101.70(3)
P(1)-Ag(1)-S(13)	115.87(3)	117.30(3)
S(11)-Ag(1)-S(13)	67.02(3)	67.35(3)
S(13)-Ag(1)-S(13)\$1	112.61(2)	112.50(3)
P(1)-Ag(1)-Ag(1)\$1	143.62(3)	145.76(3)
S(11)-Ag(1)-Ag(1)\$1	81.46(3)	80.34(3)
S(13)\$1-Ag(1)-Ag(1)\$1	57.74(2)	56.88(2)
S(13)-Ag(1)-Ag(1)\$1	54.87(2)	55.62(2)
C(12)-S(11)-Ag(1)	89.15(16)	87.99(13)
C(12)-S(13)-Ag(1)\$1	98.41(11)	97.06(12)
C(12)-S(13)-Ag(1)	84.15(14)	84.53(13)
Ag(1)-S(13)-Ag(1)\$1	67.39(2)	67.50(3)

\$1 Symmetry element \$1 -x, 2-y, -z

Fig. S3 UV-Vis. spectra of 1-4 in CH_2Cl_2 solution.

Fig. S4 (a, b) Emission spectra of (1-4) in CH_2Cl_2 solution (λ_{ex} = 300 nm).

Fig. S5 Solid phase (nujol mull) UV-Vis. spectra of 1 and 3.

Table S2. Pyrolysis and TGA results for the complexes.

Compound	T ⁰ C in TGA	Residue wt. observed (calcd.) (%)	Expected product of decomposition
1	207-401	32.5(32.4)	Ag ₂ S
2	213-405	33.4(32.3)	Ag ₂ S
3	Above 415	24.2(19.17)	Ag ₂ S
4	417-465	21.3 (19.16)	Ag ₂ S

Fig. S6 thermogravimetric (TG) trace of 1.

Fig. S7 thermogravimetric (TG) trace of 3.

Fig. S8 (a, b) ³¹P NMR spectra of complexes 3 and 4.