Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

SUPPORTING INFORMATION for

Synthesis of Glycoluril-Tetrathiafulvalene Molecular Clips for Electron-Deficient Neutral Guests through a Straightforward Diels-Alder Strategy

Marie Hardouin - Lerouge, Yoann Cotelle, Stéphanie Legoupy and Piétrick Hudhomme*

Université d'Angers, Laboratoire MOLTECH-Anjou, CNRS UMR 6200, 2 Boulevard Lavoisier, F-49045 Angers, France <u>pietrick.hudhomme@univ-angers.fr</u>

Table of contents :

¹ H NMR spectrum of compound 5	S2
¹³ C NMR spectrum of compound 5	S3
¹ H NMR spectrum of clip 1	S4
¹³ C NMR spectrum of clip 1	S 6
MALDI-TOF spectrum of clip 1	S7
Theoretical calculations	S9
Cyclic voltammetry of clip 1	S10
Cyclic voltammetry of the molecular clip 1 titration with F4-TCNQ	S11
19 F NMR spectra (CD ₂ Cl ₂) of F ₄ -TCNQ before and after its addition to molecular clip 1	S12
Determination of binding constants by UV-Visible titration	S14
Chemical oxidation of molecular clip 1 followed by UV-Visible spectroscopy	S15

¹H NMR spectrum of compound 5 (CDCl₃, 300 MHz) :

¹³C NMR spectrum of compound 5 (CDCl₃, 300 MHz) :

¹H NMR spectrum of molecular clip 1 (CD₂Cl₂, 300 MHz) :

¹³C NMR spectrum of molecular clip 1 (CD₂Cl₂, 300 MHz) :

MALDI-TOF spectrum of molecular clip 1 (Dithranol as the matrix) :

Theoretical calculations :

Theoretical calculations were realized using semi-empirical AM1 method on molecular clip **1** without silylated groups on the hydroquinone moieties for simplification.

The angle α defining the tapering cavity of the clip was determined to be close to 31° taking into account the two mean planes of the TTF-naphthoquinone arms. From these two planes, the distance (d = 9.73 Å) was calculated as an average of the distances between both TTF central double bonds, *i.e.* the average of the distances C1-C3 (9.35 Å) and C2-C4 (10.12 Å).

Cyclic voltammetry of molecular clip 1 :

Cyclic voltammetry were carried out in a three-electrode cell equipped with a platinum millielectrode as working electrode, a platinum wire counter electrode and a silver wire in a 0.01 M solution of AgNO₃ in CH₃CN as a reference electrode. The electrolytic media involved a 0.1 M solution of tetrabutylammonium-hexafluorophosphate (TBAHP - puriss quality) in CH₃CN. The ferrocene/ferricinium couple (Fc/Fc⁺) was used as internal reference and the potentials were expressed versus a saturated calomel electrode (SCE) as a reference. All experiments were performed in a glove box containing dry, oxygen-free (< 1 ppm) argon, at room temperature. Electrochemical experiments were carried out with an EGG PAR 273A potentiostat.

Deconvoluted cyclic voltamogramm for molecular clip $1 : 5.10^{-4}$ M in CH₂Cl₂/CH₃CN (9/1) in Bu₄NPF₆ 0.1M. Pt as the working and counter electrode, Ag/Ag⁺ reference electrode, scan rate 100 mV.s⁻¹. Values are given *vs* SCE, the couple Fc/Fc⁺ (E° = + 0.405 V *vs* SCE) being used as an internal reference.¹

¹ (a) G. Gritzner and J. Kuta, *Pure Appl. Chem.*, 1984, **56**, 461. (b) N. G. Connelly and W. E. Geiger, *Chem. Rev.*, 1996, **96**, 877.

Cyclic voltammetry of the molecular clip 1 titration with F₄-TCNQ :

Cyclic voltamogramms of molecular clip **1** [$2.5.10^{-4}$ M in CH₂Cl₂/CH₃CN (9/1) in Bu₄NPF₆ 0.1M] upon addition of F₄-TCNQ aliquots [10^{-2} M in CH₂Cl₂/CH₃CN (7/3)], scan rate : 100 mV.s⁻¹.

Cyclic voltamogramms of molecular clip **1** [$2.5.10^{-4}$ M in CH₂Cl₂/CH₃CN (9/1) in n-Bu₄NPF₆ 0.1 M] upon addition of F₄-TCNQ aliquots [10^{-2} M in CH₂Cl₂/CH₃CN (7/3)], scan rate : 100 mV.s⁻¹. The two reduction waves correspond to the second reduction wave of F₄-TCNQ and the first reduction wave for quinone moiety at -0.22 V and -0.76 V *vs* SCE, respectively.

¹⁹F NMR spectra (CD₂Cl₂) of F₄-TCNQ :

 $^{19}\mathrm{F}$ NMR spectra (CD₂Cl₂) of F₄-TCNQ after its addition to the solution of molecular clip 1 in stoichiometry (1:1) :

Determination of binding constants by UV-Visible titration :

UV-Visible titrations were performed in a quartz cell with 1 cm path length at room temperature in CH_2Cl_2 . Mixing the molecular clip 1 (H) solution with F₄-TCNQ (G) solution immediately produced green - colored solution, and strong characteristic bands of TTF cation radical and F₄-TCNQ anion radical bands were detected at 625 nm (TTTF), 760 and 860 nm (F₄-TCNQ). Determination of the binding constants was performed using the absorbance of the band at 860 nm.

During the UV-Visible binding titration, the total guest concentration $[G]_0$ was kept constant, whereas the total host concentration $[H]_0$ was varied. Thus, the certain amount of host was dissolved in the stock solution of the guest with a concentration of $[G]_0$, followed by dilution of the sample with additional quantities of the same stock solution of the guest.

The following equation was used to determine the fit if the data to a 1:1 binding isotherm, after normalization of the guest concentration equal to $1.^{1}$

$$\Delta A_{obsd} = \varepsilon_{C} \left(\frac{[H]^{\circ} + [G]^{\circ} + \frac{1}{K_{a}}}{2} - \sqrt{\frac{\left([H]^{\circ} + [G]^{\circ} + \frac{1}{K_{a}}\right)^{2}}{4}} - [G]^{\circ} \cdot [H]^{\circ} \right)$$

UV-Visible absorption spectra of F₄-TCNQ (CH₂Cl₂, 10^{-5} M) upon titration with molecular clip **1** (CH₂Cl₂, 5. 10^{-4} M). Inset : enlargement of the absorption spectra between 500 and 1000 nm.

Chemical oxidation of molecular clip 1 followed by UV-Visible spectroscopy :

UV-Visible absorption spectra corresponding to the chemical oxidation of molecular clip 1 (10^{-5} M in CH₂Cl₂) using successive aliquot addition of NOSbF₆ (10^{-2} M in CH₂Cl₂ / CH₃CN 1 /1) used as oxidizing reagent

¹ Düker, M. H.; Schäfer, H.; Zeller, M.; Azov, V. A. J. Org. Chem. 2013, 78, 4905-4912.