Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Supporting Information

Probing the self-aggregation behavior and counter ion distribution of a copper surfactant complex

Ravneet Kaur^a, Sakshi Gupta^a, Surinder K. Mehta^{a,*}, Yosuke Imai^b, Takanori Takiue^b, Hiroki Matsubara^b, Makoto Aratono^{b*}

^aDepartment of Chemistry & Centre of Advanced Studies in Chemistry, Panjab university, Chandigarh – 160 014, India

^bDepartment of Chemsitry, Faculty of Sciences, Kyushu University, Hakozaki 6-10-1, Higashiku, Fukuoka 812-8581, Japan

Cyclic Voltammograms for cmc determination

Cyclic voltammograms for copper surfactant complex are recorded at different concentrations to evaluate cmc. A typical cyclic voltammogram of the copper surfactant at 5mM concentration and scan rate of 100mV/s is shown in Figure 1. The redox peaks in the region - 0.2 to -0.7 correspond to the reduction and oxidation of H^+ and OH^- ions from water molecule [1]. The copper surfactant complex shows the oxidation peak at 1.04 V and correspondingly a reduction peak is observed at 0.70V. The overall redox potential of the system comes out to be 0.87 V.

Figure 1 Cyclic voltammograms of copper surfactant complex at the scan rate of 100mV/s.

Calculations for Ellipsometric analysis:

The values for surface density of each chemical species, used are $\Gamma_{\text{DTA}} = 1.855 \,\mu\text{mol m}^{-2}$, $\Gamma_{\text{Br}} = 1.03 \,\mu\text{mol m}^{-2}$, $\Gamma_{\text{Cl}} = 0.22 \,\mu\text{mol m}^{-2}$ as determined in the manuscript (last section). Γ_{DTA} has been estimated from the peak height of ERA-FTIR (This value was almost half of that at 9.5 mM). Γ_{Br} and Γ_{Cl} are estimated with assumption that the composition of adsorbed film is equal to that at 9.5 mM. Calculation of (TMA) : Volume fraction of TMA, for head groups in the layer is calculated using eq.1 given below:

$$\phi(\text{TMA}) = \frac{\Gamma(\text{TMA}) \times V_m(\text{TMA})}{d_h} \tag{1}$$

where, $\Gamma(\text{TMA})/d_h$ expresses the number of moles of TMA per m³. The value of $\Gamma(\text{TMA}) = \Gamma_{\text{DTA}} = 1.855 \,\mu\text{mol}\,\text{m}^{-2}$, V_m (TMA) = 62.3 cm³ mol⁻¹ (as estimated previously [2]) and $\varepsilon_w = 1.776$.

> *Calculation of* r_D : In case of multivalent ions and in bulk solution, the equation used to calculate Debye length or r_D is:

$$r_D = \sqrt{\frac{\varepsilon_0 \varepsilon_r RT}{2FI}} \tag{2}$$

where $I = (1/2) \sum_i z_i^2 c_i$ is ionic strength (z_i is the valence of ion *i*, and c_i is the molality of ion,*i*) which is calculated to be 17.5 mol m⁻³, $\varepsilon_0 = 8.85419 \times 10^{-12} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$, $\varepsilon_r = 78.36$ (relative permittivity of water), $R = 8.314 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$, T = 298.15 K and $F = 96484.56 \text{ C} \text{ mol}^{-1}$. Substituting the values in eq. (2) above, the value of $r_D = 2.2975 \times 10^{-9} \text{ m}$.

[1] Li Y., Hao J., Li G., J. Disp. Sci. Tech., 27 (2006) 781.

[2] Wilkinson K.M., Bain C.D., Matsubara H., Aratono M., Chem. Phys. Chem., 6 (2005) 547.