Supplementary Information

Energy Transfer in Hybrid Langmuir-Blodgett Films of Iridium Complexes and Synthetic Saponite: Dependence of Transfer Efficiency on Interlayer Distance

Hisako Sato,^{a,*}Miwa Ochi,^a Masaru Kato,^b Kenji Tamura^c and Akihiko Yamagishi^d

- ^a Department of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan, sato.hisako.my@ehime-u.ac.jp
- ^bDivision of Environmental Materials Science Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan

^c National Institute of Materials Science, Tsukuba 305-0044, Japan

^d Department of Chemistry, Toho University, Funabashi, Chiba 274-851, Japan

Contents

- 1. The UV-visible spectra of the hybrid films and solutions
- 2. The FTIR spectra of the hybrid LB films
- 3. The dynamic emission properties of the hybrid films
- 4. The model calculation of energy transfer rates in hybrid films with holes
- 5. The photographic images of the quartz substrates covered with single- and multi-layered hybrid films
- 6. Calculation of spectral overlap integral (J) and Förster radius (R₀)

Figure S1(a). The UV-visible spectra of the hybrid LB films deposited onto quartz substrates. The film composition for each curve was following: (green) {DFPPY/SAP}, (red solid line) {PIQ/SAP}, (black) {DFPPY/SAP}/{PIQ/SAP}, (sky blue) {DFPPY/SAP}/ {SA/SAP} /{PIQ/SAP}, (red) {DFPPY/SAP}/ {SA/SAP}_2 /{PIQ/SAP} and (blue) {DFPPY/SAP}/ {SA/SAP}_3 /{PIQ/SAP}.

Figure S1 (b). The UV-visible spectra of [Ir(dfppy)₂(dc9bpy)]ClO₄ (blue) and [Ir(piq)₂(dc9bpy)] ClO₄ (red) in CHCl_{3.}

2. The FTIR spectra of the hybrid LB films

Figure S2. The FTIR spectra of the hybrid LB films deposited onto quartz substrates. The film composition for each curve was following: (black) {DFPPY/SAP}/{PIQ/SAP}, (sky blue) {DFPPY/SAP}/{SA/SAP}/{PIQ/SAP}, (red) {DFPPY/SAP}/{SA/SAP}_2/{PIQ/SAP} and (blue) {DFPPY/SAP}/ {SA/SAP}_3 /{PIQ/SAP}.

3. Dynamic emission properties of the hybrid films

Table S1. The lifetime analyses for the emission at 490 nm according to eq. (1) in the text

lifetime (µs)			
$Fast(\tau_1)$	$Slow(\tau_2)$	F1(fast)	F2(slow)
0.65	1.52	0.020	0.008
0.11	0.57	0.013	0.012
0.18	0.68	0.011	0.009
0.26	0.90	0.007	0.007
0.37	1.11	0.009	0.007
0.55	1.44	0.010	0.006
	lifetime Fast(τ_1) 0.65 0.11 0.18 0.26 0.37 0.55	$\begin{array}{c} \text{lifetime } (\mu s) \\ \hline \\ Fast(\tau_1) \ Slow(\tau_2) \\ 0.65 \ 1.52 \\ 0.11 \ 0.57 \\ 0.18 \ 0.68 \\ 0.26 \ 0.90 \\ 0.37 \ 1.11 \\ 0.55 \ 1.44 \end{array}$	lifetime (μ s) Fast(τ_1) Slow(τ_2) F1(fast) 0.65 1.52 0.020 0.11 0.57 0.013 0.18 0.68 0.011 0.26 0.90 0.007 0.37 1.11 0.009 0.55 1.44 0.010

Figure S3. The lifetime of emission at 590 nm from multi-layered hybrid LB films. The film composition for each curve was following: (a) {DFPPY/SAP}/{PIQ/SAP}, (b) {DFPPY/SAP}/{SA/SAP}/{PIQ/SAP} and (c) {DFPPY/SAP}/{SA/SAP}_2/{PIQ/SAP}.

4. The model calculation of energy transfer rates in hybrid films with holes

(i) The relative value of energy transfer rate (k_{ET}) was calculated for the model multi-layered hybrid films. In each film, it was assumed that the nth intervening layer of {SA/SAP} possesses a hole with the width a_n and the depth of one layer thickness (see a drawing below the plot). The interlayer distance, d_n (denoted as R_d in the text) was assumed to be 3.0 + 1.81n in nm for n=0 ~5.

Number of inserted [SA/clay] layers (n)	d _n /nm	Hole size/ nm (a _n)	Formula for calculating k_{ET} values	<i>k_{ET}</i> (relative value)
0	3	0	1/d ₀ 4	0.01235
1	4.81	1	$1/d_0^4$ - $1/(d_0 + a_1)^4$ + $1/(d_1 + a_1)^4$	0.00932
2	6.62	0.4	$1/d_1^4 - 1/(d_1 + a_2)^4 + 1/(d_2 + a_2)^4$	0.00527
3	8.43	0.3	$1/d_2^4$ - $1/(d_2 + a_3)^4$ + $1/(d_3 + a_3)^4$	0.00409
4	10.24	0.2	$1/d_3^4$ - $1/(d_3 + a_4)^4$ + $1/(d_4 + a_4)^4$	0.00289
5	12.05	0.01	$1/d_4^4$ - $1/(d_4 + a_5)^4$ + $1/(d_5 + a_5)^4$	0.00021

(ii) The plot of the calculated k_{ET} versus the inverse of the interlayer distance (d_n) between {DFPPY/SAP} and {PIQ/SAP}. The right figure shows the drawing of a model film with holes.

5. The photographic images of the quartz substrates covered with single- and multi-layered hybrid films

Figure S4. The emission in vacuum under the irradiation of UV-light: (a) {DFPPY/SAP}, (b) {PIQ/SAP}, (c) {DFPPY/SAP}/{PIQ/SAP} and (d) {DFPPY/SAP}/{SA/SAP}₅/{PIQ/SAP}

6. Calculation of spectral overlap integral (J) and Förster radius (R₀)

The rate constant of Förster-type energy transfer (k_{ET}) is expressed by the following equation:

$$k_{ET} = \frac{9000 \ Ln10 \ k^2 \ \varphi}{128\pi^5 n^4 N \tau_D R^6} J(\lambda)$$
(S1)

in which τ_D , R_0 , R and $J(\lambda)$ denote the excited life time of a donor in the absence of an acceptor, Förster radius, the donor/acceptor distance and the spectral overlap integral, respectively. R_o is given by:

$$R_0 = 9.78 \times 10^{-5} (\kappa^2 \phi n^{-4} J(\lambda))^{\frac{1}{6}}$$

(in cm) (S2)

 $J(\lambda)$ is given by:

$$J(\lambda) = \frac{\int F_d(\lambda)\varepsilon(\lambda)\lambda^4 d\lambda}{\int F_d(\lambda)d\lambda}$$
(S3)

$$k_{ET} = \frac{1}{\tau_D} \left(\frac{R_0}{R}\right)^6$$
(S4)
$$\eta_{\text{ET}} = k_{ET} / (k_{ET} + k_{NR})$$
(S5)

As for other parameters in equations (S2) and (S3), κ is the orientation factor, ϕ the quantum yield of donor, *n* the refractive index of the medium, *N* the Avogadro constant, λ the wavelength, ε_a the extinction coefficient of the acceptor and F_d the normalized emission intensity of the donor. η_{ET} denotes the energy transfer efficiency and k_{NR} represented the decay constant in the absence of an acceptor. $J(\lambda)$ was calculated to be 1.14 x 10⁻¹⁴ M⁻¹cm³ from the emission and absorption spectra of the present donoracceptor pairs. Assuming $\kappa^2 = 2/3$ (random orientation), n = 1.3 and ϕ =0.14, R_o was obtained to be 2.62 nm. Inserting this value and $\tau_D = 0.65 \,\mu$ s (experimentally obtained), k_{ET} was calculated to be 6.85x10⁵ s⁻¹ at R= 3.0 nm from eq. (S4).