Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry 2014

Supporting Information

Catalyst-free approach to a novel imidazo [4,5-f][1,10] phenanthroline ligand and its corresponding ruthenium(II) complex: insights into their applications in colorimetric anion sensing

Hamid Khanmohammadi* and Khatereh Rezaeian

Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran E-mail: h-khanmohammadi@araku.ac.ir

Page No. S2	Contents IR spectrum of 1-(3-Formyl-4-hydroxyphenylazo)-4-nitrobenzene
S 3	¹ H NMR spectrum of 1-(3-Formyl-4-hydroxyphenylazo)-4-nitrobenzene
S4	IR spectrum of L
S 5	¹ H NMR spectrum of L
S 6	IR spectrum of 1
S 7	¹ H NMR spectrum of 1
S8	MALDI-TOF mass spectrum of 1
S 9	UV-Vis titration of 1 with $H_2PO_4^-$ in DMSO
S10	Benesi Hildebrand plots for titration of 1 with anions in DMSO
S11	Job's plot for 1 with anions in DMSO
S12	UV-Vis titrations of 1 with (A) TBAF, (B) TBAOAc and (C) TBAH ₂ PO ₄ in 9:1, DMSO-water
S13	Benesi Hildebrand plots for titration of 1 with anions in 9:1, DMSO-water
S14	UV-Vis titrations of L with (A) TBAOAc and (B) $TBAH_2PO_4$ in DMSO
S15	Benesi Hildebrand plots for titration of L with AcO ^{$-$} and H ₂ PO ₄ ^{$-$} anions in DMSO
S16	Job's plot for L with anions in DMSO
S17	UV-Vis titration of L with (A) TBAF, (B) TBAOAc and (C) TBAH ₂ PO ₄ in 9:1, DMSO-water
S18	Benesi Hildebrand plots for titration of L with anions in 9:1, DMSO-water
S19	Determination of the pK_a values
S20	¹ H NMR spectra of L in DMSO- d_6 (2×10 ⁻² mol L ⁻¹) in the absence and presence of TBAOAc
	and TBAH ₂ PO ₄
S21	¹ H NMR spectra of 1 in DMSO- d_6 (2×10 ⁻² mol L ⁻¹) in the absence and presence of TBAOAc
	and TBAH ₂ PO ₄
S22	Fluorescence spectra of L (2×10^{-5} mol L ⁻¹) in the presence of several different anions

Figure S1. IR spectrum of 1-(3-Formyl-4-hydroxyphenylazo)-4-nitrobenzene

Figure S2. ¹H NMR spectrum of 1-(3-Formyl-4-hydroxyphenylazo)-4-nitrobenzene

Figure S3. IR spectrum of L

Figure S4. ¹H NMR spectrum of L

Figure S5. IR spectrum of 1

Figure S6. ¹H NMR spectrum of 1

Figure S7. MALDI-TOF mass spectrum of 1

Figure S8. UV-Vis absorption spectra of sensor **1** (2×10^{-5} mol L⁻¹) in dry DMSO upon addition of H₂PO₄ (0-5 equiv.).

Figure S9. Benesi–Hildebrand plots of sensor **1** with (A) F^- , (B) AcO⁻ and (C) $H_2PO_4^-$ anions associated with absorbance change at 560 nm in DMSO.

Figure S10. Job's plot for sensor **1** and anions with a total concentration of 2.0×10^{-5} M in DMSO at 560 nm.

Figure S11. UV-Vis absorption spectra of sensor **1** (2×10^{-5} mol L⁻¹) in 9:1, DMSO-water upon addition of (A) TBAF, (B) TBAOAc and (C) TBAH₂PO₄ (0-5 equiv.).

Figure S12. Benesi–Hildebrand plots of sensor **1** with (A) TBAF, (B) TBAOAc and (C) TBAH₂PO₄ associated with absorbance change at 560 nm in 9:1, DMSO-water.

(A)

(B)

Figure S13. UV-Vis absorption spectra of sensor L $(2 \times 10^{-5} \text{ mol } \text{L}^{-1})$ in DMSO upon addition of (A) TBAOAc and (B) TBAH₂PO₄ (0-5 equiv.).

(B)

Figure S14. Benesi–Hildebrand plots of sensor L with (A) TBAOAc and (B) TBAH₂PO₄ anions associated with absorbance change at 552 nm in DMSO.

Figure S15. Job's plot for sensor L and anions with a total concentration of 2.0×10^{-5} M in DMSO at 552 nm.

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry 2014

Figure S16. UV-Vis absorption spectra of sensor L (2×10^{-5} mol L⁻¹) in 9:1, DMSO-water upon addition of (A) TBAF, (B) TBAOAc and (C) TBAH₂PO₄ (0-5 equiv.).

Figure S17. Benesi–Hildebrand plots of sensor L with (A) TBAF, (B) TBAOAc and (C) TBAH₂PO₄ associated with absorbance change at 529 nm in 9:1, DMSO-water.

Determination of the pK_a value:

To determine the pK_a values of L and 1, the spectrophotometric pH titrations were carried out in 9:1 DMSO-Water. The values were assigned as the maxima of the first derivative of the data shown in **Figure S18** (The inset shows the plot of the derivatives of the titrations).

(J. Am. Chem. Soc. 2000, 122, 6769-6770)

The p*K*a values were determined to be ~ 10.25 for L and 8.33 for 1 (on the basis of new band formed at 552 and 560 nm for L and 1, respectively) indicating that L and 1 likely are deprotonated with relatively basic anions.

Figure S18. (A) L and (B) 1

Figure S19. ¹H NMR spectra of L in DMSO- d_6 (2×10⁻² mol L⁻¹) in the absence and presence of TBAOAc and TBAH₂PO₄

Figure S20. ¹H NMR spectra of **1** in DMSO- d_6 (2×10⁻² mol L⁻¹) in the absence and presence of TBAOAc and TBAH₂PO₄

Figure S21. Fluorescence spectra of L (2×10^{-5} mol L⁻¹) in the presence of the different anions