Supporting Information

Synthesis, Characterization, Photophysics, and Anion Binding Properties of Gold(I) Acetylide Complexes with Amide Group

Hua-Yun Shi, Jie Qi, Zhen-Ze Zhao, Wen-Juan Feng, Yu-Hao Li, Lu Sun, Zhuo-Jia Lin, Hsiu-Yi Chao*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China

Tuble DI Cijblanograpine dala ioi da	
Formula	$C_{33}H_{24}AuN_2O_3P$
M (g/mol)	724.48
cryst syst	Triclinic
space group	P -1
a (Å)	8.7748(18)
b (Å)	9.1491(18)
c (Å)	17.558(4)
α (°)	93.54(3)
β (°)	97.12(3)
γ (°)	98.33(3)
V (Å ³)	1379.4(5)
Z	2
$D_{c} (g cm^{-3})$	1.744
T (K)	173(2)
reflns collected	10395
indep reflns	5257
R _{int}	0.0385
$\mathbf{R}^{a}_{, \mathbf{w}^{b}} [\mathbf{I} > 2\sigma(\mathbf{I})]$	0.0345, 0.0854
GOF	0.768

 Table S1. Crystallographic data for 3a

^a $R = \Sigma(|F_{\rm o}| - |F_{\rm c}|) / \Sigma|F_{\rm o}|$. ^b $R_{\rm w} = [\Sigma w(|F_{\rm o}| - |F_{\rm c}|)^2 / \Sigma w|F_{\rm o}|2]^{1/2}$.

Tuble 52. Differing constants of 44 44 with amons in CDC15					
ligand	F^{-}	Cl^{-}	OAc ⁻	Br^-	I_
4 a	b	220.81 ± 15.22	188.82 ± 13.14	167.21 ± 16.58	71.03±4.75
4b	b	97.15 ± 7.7	54.22±3.04	46.74±7.30	31.56±2.12
4 c	b	28.43 ± 2.62	22.13±2.69	18.82 ± 1.62	3.83 ± 2.45
4d	b	33.13±1.64	20.53 ± 1.27	19.1500±1.75	13.00±0.61

Table S2. Binding constants of 4a-4d with anions in $CDCl_{3}^{a}$

^{*a*}Binding constants were determined by 1:1 model using nonlinear fitting methods.

^{*b*}Chemical shifts were not suitable for accurate measurement of binding constant.

Figure S1. The ¹H NMR spectrum of 2a in CDCl₃ at 298 K.

Figure S2. The ¹H NMR spectrum of 2b in CDCl₃ at 298 K.

Figure S3. The ¹H NMR spectrum of 2c in CDCl₃ at 298 K.

Figure S4. The ¹H NMR spectrum of 2d in CDCl₃ at 298 K.

Figure S5. The ¹H NMR spectrum of **3a** in CDCl₃ at 298 K.

Figure S6. The ³¹P NMR spectrum of **3a** in CDCl₃ at 298 K.

Figure S7. The ¹H NMR spectrum of **3b** in CDCl₃ at 298 K.

Figure S8. The ³¹P NMR spectrum of **3b** in CDCl₃ at 298 K.

Figure S9. The ¹H NMR spectrum of **3c** in CDCl₃ at 298 K.

Figure S10. The ³¹P NMR spectrum of **3c** in CDCl₃ at 298 K.

Figure S11. The ¹H NMR spectrum of **3d** in CDCl₃ at 298 K.

Figure S12. The ³¹P NMR spectrum of 3d in CDCl₃ at 298 K.

Figure S13. Electronic absorption spectrum of **3b** $(1.98 \times 10^{-5} \text{ mol dm}^{-3})$ in THF at 298 K.

Figure S14. Electronic absorption spectrum of **3c** $(1.98 \times 10^{-5} \text{ mol dm}^{-3})$ in THF at 298 K.

Figure S15. Electronic absorption spectrum of **3d** $(1.98 \times 10^{-5} \text{ mol dm}^{-3})$ in THF at 298 K.

Figure S16. Emission spectrum of **3b** in the solid state at 298 K ($\lambda_{ex} = 330$ nm). * denotes the artificial peak from the instrument

Figure S17. Emission spectrum of **3c** in the solid state at 298 K (λ_{ex} = 315 nm). * denotes the artificial peak from the instrument

Figure S18. Emission spectrum of 3d in the solid state at 298 K (λ_{ex} = 315 nm).

Figure S19. Emission spectrum of **3a** (1.98×10^{-5} mol dm⁻³) in THF at 298 K (λ_{ex} = 330 nm).

Figure S20. Emission spectroscopy of 3b (1.98×10^{-5} mol dm⁻³) in THF at 298 K ($\lambda_{ex} = 315$ nm).

FigureS21. Emission spectrum of **3c** (1.98×10^{-5} mol dm⁻³) in THF at 298 K (λ_{ex} = 315 nm).

FigureS22. Emission spectrum of **3d** (1.98×10^{-5} mol dm⁻³) in THF at 298 K (λ_{ex} = 315 nm).

Figure S23. The ¹H NMR spectral changes of **3a** upon addition of F^- in CDCl₃ at 298 K.

Figure S24. The ¹H NMR spectral changes of **3a** upon addition of Br^- in CDCl₃ at 298 K.

Figure S25. A plot of the chemical shift change of amide proton H_a as a function of [Br⁻] and its theoretical fit for the 1:1 binding of **3a** with Br⁻.

Figure S26. The ¹H NMR spectral changes of **3a** upon addition of I^- in CDCl₃ at 298 K.

Figure S27. A plot of the chemical shift change of amide proton H_a as a function of [I⁻] and its theoretical fit for the 1:1 binding of **3a** with I⁻.

Figure S28. The ¹H NMR spectral changes of 3a upon addition of OAc⁻ in CDCl₃ at 298 K.

Figure S29. A plot of the chemical shift change of amide proton H_a as a function of [AcO⁻] and its theoretical fit for the 1:1 binding of **3a** with AcO⁻.

Figure S30. The ¹H NMR spectral changes of **3b** upon addition of F^- in CDCl₃ at 298 K.

Figure S31. The ¹H NMR spectral changes of **3b** upon addition of Cl^- in CDCl₃ at 298 K.

Figure S32. A plot of the chemical shift change of amide proton H_a as a function of [Cl⁻] and its theoretical fit for the 1:1 binding of **3b** with Cl⁻.

Figure S33. The ¹H NMR spectral changes of 3c upon addition of F^- in CDCl₃ at 298 K.

Figure S34. A plot of the chemical shift change of amide proton H_a as a function of $[F^-]$ and its theoretical fit for the 1:1 binding of **3c** with F^- .

Figure S35. The ¹H NMR spectral changes of 3c upon addition of Cl⁻ in CDCl₃ at 298 K.

Figure S36. A plot of the chemical shift change of amide proton H_a as a function of [Cl⁻] and its theoretical fit for the 1:1 binding of **3c** with Cl⁻.

Figure S37. The ¹H NMR spectral changes of 3c upon addition of Br⁻ in CDCl₃ at 298 K.

Figure S38. A plot of the chemical shift change of amide proton H_a as a function of [Br⁻] and its theoretical fit for the 1:1 binding of **3c** with Br⁻.

Figure S39. The ¹H NMR spectral changes of **3c** upon addition of I^- in CDCl₃ at 298 K.

Figure S40. A plot of the chemical shift change of amide proton H_a as a function of [I⁻] and its theoretical fit for the 1:1 binding of **3c** with I⁻.

Figure S41. The ¹H NMR spectral changes of 3c upon addition of OAc⁻ in CDCl₃ at 298 K.

Figure S42. A plot of the chemical shift change of amide proton H_a as a function of [AcO⁻] and its theoretical fit for the 1:1 binding of **3c** with AcO⁻.

Figure S43. The ¹H NMR spectral changes of **3d** upon addition of Cl^- in $CDCl_3$ at 298 K.

Figure S44. A plot of the chemical shift change of amide proton H_a as a function of [Cl⁻] and its theoretical fit for the 1:1 binding of **3d** with Cl⁻.

Figure S45. The shifts of the signals of amide N-H (H_a) of **3c** upon addition of different anions with different concentrations in CDCl₃ at 298 K.

Figure S46. The ¹H NMR spectral changes of **4a** upon addition of F^- in CDCl₃ at 298 K.

Figure S47. The ¹H NMR spectral changes of **4a** upon addition of Cl^- in CDCl₃ at 298 K.

Figure S48. A plot of the chemical shift change of amide proton H_a as a function of [Cl⁻] and its theoretical fit for the 1:1 binding of **4a** with Cl⁻.

Figure S49. The ¹H NMR spectral changes of **4a** upon addition of Br⁻ in CDCl₃ at 298 K.

Figure S50. A plot of the chemical shift change of amide proton H_a as a function of [Br⁻] and its theoretical fit for the 1:1 binding of **4a** with Br⁻.

Figure S51. The ¹H NMR spectral changes of **4a** upon addition of Γ in CDCl₃ at 298 K.

Figure S52. A plot of the chemical shift change of amide proton H_a as a function of [I⁻] and its theoretical fit for the 1:1 binding of **4a** with I⁻.

Figure S53. The ¹H NMR spectral changes of 4a upon addition of OAc⁻ in CDCl₃ at 298 K.

Figure S54. A plot of the chemical shift change of amide proton H_a as a function of [AcO⁻] and its theoretical fit for the 1:1 binding of **4a** with AcO⁻.

Figure S55. The ¹H NMR spectral changes of 4d upon addition of F^- in CDCl₃ at 298 K.

Figure S56. The ¹H NMR spectral changes of **4d** upon addition of Cl^- in $CDCl_3$ at 298 K.

Figure S57. A plot of the chemical shift change of amide proton H_a as a function of [Cl⁻] and its theoretical fit for the 1:1 binding of **4d** with Cl⁻.

Figure S58. The ¹H NMR spectral changes of **4d** upon addition of Br^- in CDCl₃ at 298 K.

Figure S59. A plot of the chemical shift change of amide proton H_a as a function of [Br⁻] and its theoretical fit for the 1:1 binding of **4d** with Br⁻.

Figure S60. The ¹H NMR spectral changes of **4d** upon addition of I^- in CDCl₃ at 298K.

Figure S61. A plot of the chemical shift change of amide proton H_a as a function of [Γ] and its theoretical fit for the 1:1 binding of **4d** with Γ .

Figure S62. The 1 H NMR spectral changes of 4d upon addition of OAc⁻ in CDCl₃ at 298 K.

Figure S63. A plot of the chemical shift change of amide proton H_a as a function of [AcO⁻] and its theoretical fit for the 1:1 binding of **4d** with AcO⁻.

Figure S64. The ¹H NMR spectrum of (a) 3a + 10 eq of F⁻ (DMSO-d₆, 298 K), (b) 3a (DMSO-d₆, 298 K),(c) 3a + 10 eq of F⁻ (CDCl₃, 298 K), and (d) 3a (CDCl₃, 298 K), ([3a] = 5.0×10⁻³mol dm⁻³).

Figure S65. The ¹⁹F NMR spectrum of **3a** $(5.0 \times 10^{-3} \text{mol dm}^{-3}) + 10$ eq of F⁻ in DMSO-d₆ at 298 K.

Figure S66. The UV–vis spectra of **3a** $(3.96 \times 10^{-5} \text{ mol dm}^{-3})$ in DMSO in the presence of 50 eq of F⁻, Cl⁻, Br⁻, I⁻, or OAc⁻.

Figure S67. Colors of 3a $(3.96 \times 10^{-5} \text{ mol dm}^{-3})$ in DMSO in the presence of 50 eq of F⁻, Cl⁻, Br⁻, I⁻, or OAc⁻.