Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Electronic supplementary information for

Copper-catalyzed three-component reactions of phenols, acyl

chlorides and Wittig reagents for the synthesis of β-aryloxyl acrylates

Yi Zhang,^a Yunyun Liu^a and Jie-Ping Wan*

^aKey Laboratory of Functional Small Organic Molecules, Ministry of Education,

College of Chemistry and Chemical Engineering, Jiangxi Normal University,

Nanchang 330022, P. R. China

Email: wanjieping@gmail.com

General experimental information

All chemicals and solvents used in the experiments were obtained from commercial sources and used directly without further treatment. ¹H and ¹³C NMR were recorded in 400 MHz apparatus. The frequency for ¹H NMR and ¹³C NMR test are 400 MHz and 100 MHz, respectively. The chemical shifts were reported in ppm using TMS as internal standard. HRMS data were obtained under ESI model in the spectrometer equipped with ion trap analyzer. Melting points were tested in X-4A instrument without correcting temperature.

General procedure for the synthesis of alkyl acrylates 4 and 6.

In a 25 mL round bottom flask, yilde 2 (0.45 mmol) was resolved in CH_2Cl_2 (2 mL), and acyl chloride 3 (0.45 mmol), Et_3N (0.45 mmol) as well as phenol 1 (0.3 mmol), CuBr (0.03 mmol), L3 (0.06 mmol), Cs_2CO_3 (0.6 mmol), DMF (2 mL) were then employed. For the synthesis of 6, all reagents except phenol and DMF were doubled. The resulting mixture was stirred at 90 °C for 8 h (TLC). The reaction was allowed to stand to cool down to room temperature, and 10 mL water was added. The heterogeneous mixture was the extracted with ethyl acetate (3 ×10 mL). The combined organic layer was dried overnight with anhydrous Na₂SO₄. The solution was then collected by filtration, and the solvent was removed at reduced pressure. The residue was subjected to silica gel column chromatography to give pure products using mixed petroleum ether and ethyl acetate (V_{PET} : $V_{EA} = 60:1$).

Characterization data

(*E*)-Ethyl 3-phenoxybut-2-enoate (4a).¹ Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31$ (t, 2 H, J = 6.0 Hz), 7.14 (t, 1 H, J = 8.0 Hz), 6.94 (d, 2 H, J = 8.0 Hz), 4.78 (s, 1 H), 4.01 (q, 2 H, J = 6.7 Hz), 2.42 (s, 3 H), 1.13 (t, 3 H, J = 6.0 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.8$, 167.7, 153.3, 130.1, 125.6, 121.5, 96.1, 59.5, 18.5, 14.3.

(*E*)-Ethyl 3-(*p*-tolyloxy)but-2-enoate (4b).¹ Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.10$ (d, 2 H, J = 8.0 Hz), 6.82 (d, 2 H, J = 8.0 Hz), 4.78 (s, 1 H), 4.01 (q, 2 H, J = 8.0 Hz), 2.40 (s, 3 H), 2.28 (s, 3 H), 1.13 (t, 3 H, J = 6.0 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.0$, 166.7, 150.1, 134.2, 129.4, 120.2, 94.9, 58.4, 19.8, 17.4, 13.3.

(*E*)-Ethyl 3-(4-chlorophenoxy)but-2-enoate (4c). Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ = 7.28 (d, 2 H, *J* = 8.0 Hz), 6.89 (d, 2 H, *J* = 8.0 Hz), 4.78 (s, 1 H), 4.02 (q, 2 H, *J* = 8.0 Hz), 2.40 (s, 3 H), 1.14 (t, 3 H, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 172.3, 167.3, 151.9, 131.1, 130.1, 122.9, 96.7, 59.6, 18.3, 14.3. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₂H₁₃ClNaO₃: 263.0451; found: 263.0470.

(*E*)-Methyl 4-(4-ethoxy-4-oxobut-2-en-2-yloxy)benzoate (4d). White solid, m.p. 47-49 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.08$ (d, 2 H, J = 8.0 Hz), 7.09 (d, 2 H, J = 8.0 Hz), 4.92 (s, 1 H), 4.10 (q, 2 H, J = 8.0 Hz), 3.92 (s, 3 H), 2.49 (s, 3 H), 1.21 (t, 3 H, J = 6.0 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.4$, 167.2, 166.2, 157.3, 131.8, 127.4, 121.2, 97.9, 59.7, 52.2, 18.2, 14.2. HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{14}H_{17}O_5$: 265.1076; found: 265.1070.

(*E*)-Ethyl 3-(2-chlorophenoxy)but-2-enoate (4e).¹ Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ = 7.38 (d, 1 H, *J* = 8.0 Hz), 7.22 (t, 1 H, *J* = 8.0 Hz), 7.12 (t, 1 H, *J* = 8.0 Hz), 7.02 (d, 1 H, *J* = 8.0 Hz), 4.68 (s, 1 H), 4.02 (q, 2 H, *J* = 8.0 Hz), 2.45 (s, 3 H), 1.14 (t, 3 H, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 171.2, 167.3, 149.2, 130.9, 128.2, 127.1, 126.8, 123.6, 96.1, 59.6, 17.9, 14.3.

(*E*)-Ethyl 3-(2-iodophenoxy)but-2-enoate (4f).¹ Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.82$ (d, 1 H, J = 8.0 Hz), 7.34 (t, 1 H, J = 8.0 Hz), 7.04 (d, 1 H, J = 8.0 Hz), 6.94 (t, 1 H, J = 8.0 Hz), 4.74 (s, 1 H), 4.09 (q, 2 H, J = 6.7 Hz), 2.54 (s, 3 H), 1.19 (t, 3 H, J = 6.0 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.1$, 167.2, 153.2, 140.0, 129.9, 127.4, 122.7, 96.4, 90.4, 59.6, 18.3, 14.3.

(*Z*)-Ethyl 3-(4-chlorophenoxy)pent-2-enoate (4g). Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ = 7.26 (d, 2 H, *J* = 8.0 Hz), 6.92 (d, 2 H, *J* = 8.0 Hz), 5.48 (s, 1 H), 4.09 (q, 2 H, *J* = 6.7 Hz), 2.24 (q, 2 H, *J* = 8.0 Hz), 1.18 (t, 3 H, *J* = 8.0 Hz), 1.09 (t, 3 H, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 167.9, 164.5, 154.3, 129.5, 128.2, 118.9, 104.3, 59.9, 26.8, 14.1, 11.0. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₃H₁₆ClO₃: 255.0788; found: 255.0790.

(*Z*)-Ethyl 3-(4-chlorophenoxy)hex-2-enoate (4h). Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ = 7.19 (d, 2 H, *J* = 8.0 Hz), 6.85 (d, 2 H, *J* = 8.0 Hz), 5.41 (s, 1 H),

4.01 (q, 2 H, J = 8.0 Hz), 2.12 (t, 2 H, J = 8.0 Hz), 1.50-1.41 (m, 2 H), 1.11 (t, 3 H, J = 8.0 Hz), 0.85 (t, 3 H, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.3$, 164.3, 154.4, 129.5, 128.1, 118.8, 105.5, 59.8, 35.5, 19.9, 14.1, 13.4. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₄H₁₈ClO₃: 269.0944; found: 269.0944.

(*Z*)-Ethyl 3-(4-bromophenoxy)hex-2-enoate (4i). Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ = 7.40 (d, 2 H, *J* = 8.0 Hz), 6.87 (d, 2 H, *J* = 8.0 Hz), 5.49 (s, 1 H), 4.08 (q, 2 H, *J* = 8.0 Hz), 2.19 (t, 2 H, *J* = 8.0 Hz), 1.58-1.48 (m, 2 H), 1.17 (t, 3 H, *J* = 6.0 Hz), 0.92 (t, 3 H, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 166.1, 164.4, 155.0, 132.5, 119.2, 115.6, 105.7, 59.9, 35.5, 19.8, 14.1, 13.4. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₄H₁₈BrO₃: 313.0439; found: 313.0443.

(*E*)-Methyl 3-phenoxybut-2-enoate (4j). Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31$ (t, 2 H, J = 8.0 Hz), 7.15 (t, 1 H, J = 8.0 Hz), 6.94 (d, 2 H, J = 8.0 Hz), 4.80 (s, 1 H), 3.55 (s, 3 H), 2.42 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.8$, 167.0, 152.4, 128.9, 124.6, 120.5, 94.9, 49.8, 17.4. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₁H₁₂NaO₃: 215.0684; found: 215.0672.

(*E*)-Methyl 3-(*p*-tolyloxy)but-2-enoate (4k). Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.10$ (d, 2 H, J = 8.0 Hz), 6.82 (d, 2 H, J = 8.0 Hz), 4.79 (s, 1 H), 3.54 (s, 3 H), 2.41 (s, 3 H), 2.27 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.2$, 167.1, 150.1, 134.3, 129.4, 120.2, 94.5, 49.7, 19.8, 17.4. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₂H₁₄NaO₃: 229.0841; found: 229.0850.

(E)-Methyl 4-(4-methoxy-4-oxobut-2-en-2-yloxy)benzoate (41). Pale yellow liquid;

¹H NMR (400 MHz, CDCl₃): $\delta = 8.01$ (d, 2 H, J = 8.0 Hz), 7.01 (d, 2 H, J = 8.0 Hz), 4.87 (s, 1 H), 3.85 (s, 3 H), 3.56 (s, 3 H), 2.42 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.6$, 167.7, 166.1, 157.3, 131.7, 127.5, 121.1, 97.7, 52.1, 50.9, 18.1. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₃H₁₅O₅: 251.0919; found: 251.0903.

(*E*)-Methyl 3-(3-acetylphenoxy)but-2-enoate (4m). Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.74$ (d, 1 H, J = 8.0 Hz), 7.53 (s, 1 H), 7.42 (t, 1 H, J = 8.0 Hz), 7.16 (d, 1 H, J = 8.0 Hz), 4.77 (s, 1 H), 3.55 (s, 3 H), 2.53 (s, 3 H), 2.43 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 196.7$, 172.3, 167.6, 153.7, 139.2, 130.2, 126.1, 125.5, 121.2, 96.7, 50.8, 26.5, 18.3. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₃H₁₄NaO₄: 257.0790; found: 257.0790.

(*E*)-Methyl 5-methyl-3-phenoxyhex-2-enoate (4n). Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ = 7.38 (t, 2 H, *J* = 7.0 Hz), 7.22 (t, 1 H, *J* = 7.0 Hz), 7.00 (d, 2 H, *J* = 8.0 Hz), 4.85 (s, 1 H), 3.60 (s, 3 H), 2.85 (d, 2 H, *J* = 8.0 Hz), 2.22-2.14 (m, 1 H), 1.06 (d, 6 H, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 175.9, 167.7, 153.6, 129.9, 125.6, 121.5, 96.1, 50.7, 39.7, 27.3, 22.3. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₄H₁₉O₃: 235.1334; found: 235.1333.

(*Z*)-Methyl 3-(4-chlorophenoxy)-5-methylhex-2-enoate (4o). Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.26$ (d, 2 H, J = 8.0 Hz), 6.91 (d, 2 H, J = 8.0 Hz), 5.47 (s, 1 H), 3.63 (s, 3 H), 2.09 (d, 2 H, J = 8.0 Hz), 1.90-1.82 (m, 1 H), 0.91 (d, 6 H, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.8$, 164.7, 154.2, 129.5, 128.3, 118.9, 106.1, 50.8, 42.6, 26.2, 22.2. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₄H₁₈ClO₃:

269.0944; found: 269.0942.

(Z)-Methyl 3-(4-bromophenoxy)-5-methylhex-2-enoate (4p). Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.41$ (d, 2 H, J = 8.0 Hz), 6.86 (d, 2 H, J = 8.0 Hz), 5.48 (s, 1 H), 3.62 (s, 3 H), 2.08 (d, 2 H, J = 8.0 Hz), 1.88-1.82 (m, 1 H), 0.91 (d, 6 H, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.6$, 164.6, 154.7, 132.5, 119.3, 115.6, 106.2, 51.1, 42.6, 26.2, 22.2. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₄H₁₈BrO₃: 313.0439; found: 313.0436.

(E)-*tert*-Butyl 3-(4-chlorophenoxy)but-2-enoate (4q). Pale yellow solid, m.p. 78-80 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.28 (d, 2 H, *J* = 8.0 Hz), 6.89 (d, 2 H, *J* = 8.0 Hz), 4.71 (s, 1 H), 2.36 (s, 3 H), 1.35 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ = 166.8, 152.1, 130.7, 130.0, 129.5, 122.9, 98.8, 79.7, 28.3, 17.9. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₄H₁₈ClO₃: 269.0944; found: 269.0938.

(*E*, *E*)-Dimethyl 3,3'-(1,3-phenylenebis(oxy))bis(but-2-enoate) (6). White solid, m.p. 112-114 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.40 (t, 1 H, *J* = 8.0 Hz), 6.90 (d, 2 H, *J* = 8.0 Hz), 6.73 (s, 1 H), 4.94 (s, 2 H), 3.64 (s, 6 H), 2.47 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ = 172.0, 167.7, 154.6, 130.9, 118.6, 115.0, 96.9, 50.8, 18.2. HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₆H₁₈NaO₆: 329.1001; found: 329.0995.

References

G. W. Stewart, M. Shevlin, A. D. G. Yamagata, A. W. Gibson, S. P. Keen, J. P. Scott, *Org. Lett.* 2012, 14, 5440.

¹H and ¹³C NMR of 4a

¹H and ¹³C NMR of **4b**

¹H and ¹³C NMR of **4c**

¹H and ¹³C NMR of **4d**

¹H and ¹³C NMR of 4e

¹H and ¹³C NMR of **4f**

¹H and ¹³C NMR of **4g**

¹H and ¹³C NMR of **4h**

¹H and ¹³C NMR of 4i

¹H and ¹³C NMR of **4**k

¹H and ¹³C NMR of **4p**

