Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Electronic Supplementary Information

Titanium Complexes with Octahedral Geometry Chelated by Salen Ligands Adopting β-*cis* Configuration for the Ring-Opening Polymerisation of Lactide

Bo Gao^{a, b}, Xiang Li^b, Ranlong Duan^b and Xuan Pang* ^b

- a. School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China. Tel & Fax: +86-431-85583016. E-mail: gaobo@ciac.ac.cn.
- b. Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China. Tel & Fax: +86-431-85262116. E-mail: xpang@ciac.ac.cn.

Content

Figure S1	P1
Figure S2	P2
Figure S3	P2
Figure S4	P3
Figure S5	P3
Table S1.	P3
Table S2.	P4
1 Experiments	P4
1.1 General	P4
1.2 Synthesis of ligands	P4
1.3 Synthesis of Complexes	P5
1.4 General procedure for lactide polymerisation	P6
2 References	P6

Figure S1. Some initiators for ROP of LA.

Figure S2. ¹H 400 NMR spectrum of complex 1 in C_6D_6 .

Figure S3. Stacked ¹H 400 NMR spectra of ligand

L1 and complex 1 in C_6D_6 .

Figure S4. Possible octahedral coordination isomers.

Figure S5. Crystal structure of compound 5 in reference 14.

Ti1–O1	1.906(3)	Ti1–O2	1.983(3)
Ti1–O3	1.828(3)	Ti1–O4	1.795(3)
Ti1–N1	2.234(3)	Ti1–N2	2.182(3)
O4-Ti1-O3	96.04(15)	O4-Ti1-O1	104.67(13)
O3-Ti1-O1	96.87(13)	O4-Ti1-O2	89.60(14)
O3-Ti1-O2	169.42(13)	O1-Ti1-O2	90.32(12)
O4-Ti1-N2	95.81(13)	O3-Ti1-N2	90.68(13)
O1-Ti1-N2	157.23(12)	O2-Ti1-N2	79.82(12)
04-Ti1-N1	173.18(14)	O3-Ti1-N1	84.91(12)
O1-Ti1-N1	81.88(12)	O2-Ti1-N1	88.44(12)
N2-Ti1-N1	77.41(12)		

Table S1. Selected bond lengths (Å) and angles (deg) for complex 1.

_

_

Complex	1	
Formula	C ₄₁ H ₆₆ N ₂ O ₄ Ti	
М	608.86	
Crystal system	Monoclinic	
Space group	<i>C</i> 2/c	
<i>a</i> /Å	16.4300(12)	
b/Å	26.165(2)	
c /Å	21.2458(15)	
$\alpha / ^{\circ}$	90	
$eta/^{\circ}$	105.579(1)	
γ/°	90	
$V/{ m \AA}^3$	8797.7(11)	
Ζ	8	
T/K	188(2)	
μ/mm^{-1}	μ/mm ⁻¹ 0.231	
Reflections collected	7789	
Unique reflections (R_{int})	5244(0.0497)	
GOOF	1.059	
No. of parameters	469	
$R[I \ge 2\Box(I)]$	$[I > 2 \Box(I)]$ 0.0684	
wR (all data)	0.0984	

 Table S2. Details of crystal data and structure refinements for complex 1.

1 Experiments

1.1 General

All reaction with air- and water-sensitive compounds were carried out using standard Schlenk line techniques. Elemental analysis were accomplished by a Varian EL microanalyzer, ¹H NMR, ¹H-¹H COSY, ¹³C NMR and ¹H-¹³C HMQC spectra were performed on Bruker AV 300M or 400M apparatus at 25 °C in C₆D₆ and CDCl₃ for compounds and macromolecules, respectively. Crystallographic data were gathered and analyzed by referencing the reference.^{S1} The momer conversions were confirmed by referencing the references.^{S2} Gel permeation chromatography (GPC) measurements were conducted with a Waters 515 GPC with CHCl₃ as the eluant (flow rate: 1 mLmin⁻¹, at 35 °C). *P*_rs (the propabilities of meso linkages) were calculated from different tetrad intensities measured by homonuclear decoupled ¹H NMR^{S3}. The molecular weight was adjusted through PS standard. 3,5-di-tert-butylsalicylaldehyde, 2,2-dimethyl-1,3-propanediamine, 1,3-propanediamine, 3,5-dichlorosalicylaldehyde, salicylaldehyde and titanium tetraisopropoxide was obtained from Aldrich.

1.2 Synthesis of ligands

Ligands 1 - 4 were synthesized by published procedures. S1a, S2b

1.3 Synthesis of Complexes

General process: A mixture of ligand Ln (n=1, 2, 3 or 4, 2.5 mmol) and titanium tetraisopropoxide (2.5 mmol) in 20 mL toluene was stirred for ca. 24 h at 25 °C in glovebox. And concentrated to ca. 2.0 mL to give a yellow powder, then the product was washed with about 0.5 mL of dry pentane and dried in vacuum. The product was isolated as yellow solid in 83.4 - 94.7% yields.

Complex 1: ¹H NMR (400 MHz, C₆D₆) δ 7.70 (2s, 1H, Ar*H*), 7.65 (s, 1H, N=C*H*), 7.58 (2s, 1H), 7.54 (s, 1H, N=C*H*), 7.13 (2s, 1H, Ar*H*), 7.11 (2s, 1H, Ar*H*), 5.11 (2t, *J* = 12.1, 6.0 Hz, 1H, OC*H*(CH₃)₂), 4.81 (2s, 1H, C*H*₂), 4.67 (2t, *J* = 12.1, 6.1 Hz, 1H, OC*H*(CH₃)₂), 3.70 (2s, 1H, C*H*₂), 2.82 (2s, 1H, C*H*₂), 2.72 (2s, 1H, C*H*₂), 1.41 (d, *J* = 6.1 Hz, 3H, OCH(C*H*₃)₂), 1.76 (s, 9H, C(C*H*₃)₃), 1.38 (s, 9H, C(C*H*₃)₃), 1.35 (bs, 12H, 9 H, C(C*H*₃)₃ and 3H, OCH(C*H*₃)₂), 1.34 (s, 9H, C(C*H*₃)₃), 1.06 (d, *J* = 6.1 Hz, 3H, OCH(C*H*₃)₂), 1.34 (s, 9H, C(C*H*₃)₃), 1.06 (d, *J* = 6.1 Hz, 3H, OCH(C*H*₃)₂) 1.02 (d, *J* = 6.1 Hz, 3H, OCH(C*H*₃)₂), 0.78 (s, 3H, C-C*H*₃), 0.38 ppm (s, 3H C-C*H*₃). ¹³C NMR (100 MHz, C₆D₆) δ 165.74 (ArC), 164.67 (N=CH), 164.11 (ArC), 162.09 (N=CH), 139.09 (ArC), 139.00 (ArC), 137.23 (ArC), 137.14 (ArC), 129.37 (ArC), 128.77 (ArC), 126.40 (ArC), 125.70 (ArC), 123.83 (ArC), 121.94 (ArC), 77.63 (OCH(CH₃)₂), 76.59 (CH₂), 73.19 (OCH(CH₃)₂), 72.54 (CH₂), 36.89 (C(CH₃)₃), 35.80 (C(CH₃)₃), 35.25 (C(CH₃)₃), 34.10 (C(CH₃)₃), 31.80 (C(CH₃)₃), 31.69 (C(CH₃)₂), 26.14 (OCH(CH₃)₂), 26.10 (C-CH₃), 23.47 ppm (C-CH₃). Anal. Calcd for C₄₁H₆₄N₂O₄Ti (%): C, 70.47; H, 9.52; N, 4.01. Found: C, 70.49; H, 9.55; N, 4.04. Crystal of 1 suitable for X-ray structural analyses was grown in benzene solution. CCDC: 908773.

Complex 2: ¹H NMR (400 MHz, C₆D₆) δ 7.72 (2d, *J* = 13.5, 6.7 Hz, 2H, Ar*H*), 7.65 (s, 1H, N=*CH*), 7.60 (2d, *J* = 13.2, 6.6 Hz, 2H, Ar*H*), 7.55 (s, 1H, N=*CH*), 7.19 – 7.13 (m, 4H, Ar*H*), 5.13 (2t, *J* = 12.2, 6.1 Hz, 1H, OC*H*(CH₃)₂), 4.84 (2s, 1H, C*H*₂), 4.69 (2t, *J* = 12.1, 6.0 Hz, 1H, OC*H*(CH₃)₂), 3.72 (2s, 1H, C*H*₂), 2.84 (2s, 1H, C*H*₂), 2.73 (2s, 1H, C*H*₂), 1.44 (d, *J* = 6.0 Hz, 3H, OCH(C*H*₃)₂), 1.37 (s 3H, OCH(C*H*₃)₂), 1.08 (d, *J* = 6.0 Hz, 3H, OCH(C*H*₃)₂) 1.03 (d, *J* = 6.0 Hz, 3H, OCH(C*H*₃)₂), 0.79 (s, 3H, C-C*H*₃), 0.40 ppm (s, 3H C-C*H*₃). ¹³C NMR (100 MHz, C₆D₆) δ 166.58 (ArC), 165.07 (N=CH), 164.77 (ArC), 162.97 (N=CH), 140.03 (ArC), 139.57 (ArC), 138.11 (ArC), 137.86 (ArC), 129.94 (ArC), 129.03 (ArC), 127.22 (ArC), 126.14 (ArC), 124.37 (ArC), 122.55 (ArC), 77.83 (OCH(CH₃)₂), 76.79 (CH₂), 73.84 (OCH(CH₃)₂), 73.12 (CH₂), 27.90 (OCH(CH₃)₂), 27.23 (OCH(CH₃)₂), 27.09 (OCH(CH₃)₂), 27.01 (OCH(CH₃)₂), 26.75 (C-CH₃), 24.27 ppm (C-CH₃). Anal. Calcd for C₂₅H₂₄N₂O₄Ti (%): C, 63.29; H, 7.22; N, 5.90. Found: C, 63.27; H, 7.19; N, 5.87.

Complex 3: ¹H NMR (400 MHz, C₆D₆) δ 7.74 (2s, 1H, Ar*H*), 7.68 (s, 1H, N=C*H*), 7.62 (2s, 1H), 7.57 (s, 1H, N=C*H*), 7.18 (2s, 1H, Ar*H*), 7.15 (2s, 1H, Ar*H*), 5.15 (2t, *J* = 12.0, 6.0 Hz, 1H, OC*H*(CH₃)₂), 4.86 (2s, 1H, C*H*₂), 4.71 (2t, *J* = 12.0, 6.0 Hz, 1H, OC*H*(CH₃)₂), 3.73 (2s, 1H, C*H*₂), 2.86 (2s, 1H, C*H*₂), 2.75 (2s, 1H, C*H*₂), 1.45 (d, *J* = 6.0 Hz, 3H, OCH(C*H*₃)₂), 1.39 (s 3H, OCH(C*H*₃)₂), 1.10 (d, *J* = 6.0 Hz, 3H, OCH(C*H*₃)₂) 1.05 (d, *J* = 6.0 Hz, 3H, OCH(C*H*₃)₂), 0.81 (s, 3H, C-C*H*₃), 0.42 ppm (s, 3H C-C*H*₃). ¹³C NMR (100 MHz, C₆D₆) δ 167.20 (ArC), 166.14 (N=CH), 165.95 (ArC), 164.03 (N=CH), 141.12 (ArC), 140.98 (ArC), 139.30 (ArC), 139.02 (ArC), 131.03 (ArC), 130.54 (ArC), 128.36 (ArC), 127.53 (ArC), 125.79 (ArC), 123.88 (ArC), 79.23 (OCH(CH₃)₂), 78.01 (CH₂), 75.07 (OCH(CH₃)₂), 74.30 (CH₂), 29.02 (OCH(CH₃)₂), 28.57 (OCH(CH₃)₂), 28.31 (OCH(CH₃)₂), 28.19 (OCH(CH₃)₂), 28.00 (C-CH₃), 25.39 ppm

(C-CH₃). Anal. Calcd for C₂₅H₃₀ C₁₄N₂O₄Ti (%): C, 49.05; H, 4.94; N, 4.58. Found: C, 49.01; H, 4.90; N, 4.56.

Complex 4: ¹H NMR (400 MHz, C₆D₆) δ 7.71 (2s, 1H, Ar*H*), 7.62 (s, 1H, N=C*H*), 7.60 (2s, 1H, Ar*H*), 7.54 (s, 1H, N=C*H*), 7.06 (2s, 1H, Ar*H*), 7.05 (2s, 1H, Ar*H*), 5.02 (2t, *J* = 12.1, 6.0 Hz, 1H, OC*H*(CH₃)₂), 4.80 – 4.68 (m, 2H, OC*H*(CH₃)₂ and C*H*₂), 3.70 – 3.57 (m, 1H, C*H*₂), 3.55 – 3.45 (m, 1H, C*H*₂), 3.40 – 3.30 (m, 1H, C*H*₂), 3.17 (t, *J* = 9.3 Hz, 1H, C*H*₂), 3.06 – 2.92 (m, 1H, C*H*₂), 1.79 (s, 9H, C(C*H*₃)₃), 1.43 (s, 9H, C(C*H*₃)₃), 1.36 (s, 9H, C(C*H*₃)₃), 1.35 (s, 9H, C(C*H*₃)₃), 1.29 (d, *J* = 6.1 Hz, 3H, OCH(C*H*₃)₂), 1.09 (d, *J* = 6.0 Hz, 3H, OCH(C*H*₃)₂), 1.04 (d, *J* = 6.0 Hz, 3H, OCH(C*H*₃)₂), 0.95 ppm (d, *J* = 6.0 Hz, 3H, OCH(C*H*₃)₂). ¹³C NMR (100 MHz, C₆D₆) δ 165.58 (ArC), 165.32 (N=CH), 163.22 (ArC), 161.83 (N=CH), 138.94 (ArC), 123.18 (ArC), 121.72 (ArC), 78.13 (OCH(CH₃)₂), 77.60 (CH₂), 76.51 (OCH(CH₃)₂), 60.55 (CH₂), 60.16 (CH₂), 35.73 (C(CH₃)₃), 35.38 (C(CH₃)₃), 34.19 (C(CH₃)₃), 34.08 (C(CH₃)₃), 31.75 (C(CH₃)₃), 30.82 (C(CH₃)₃), 30.50 (C(CH₃)₃), 30.15 (C(CH₃)₃), 29.74 (OCH(CH₃)₂), 26.95 (OCH(CH₃)₂), 26.12 (OCH(CH₃)₂), 26.45 (OCH(CH₃)₂), 26.12 ppm (OCH(CH₃)₂). Anal. Calcd for C₃₉H₆₂N₂O₄Ti (%): C, 69.83; H, 9.32; N, 4.18. Found: C, 69.80; H, 9.29; N, 4.15.

1.4 General procedure for lactide polymerisation

1.4.1 Polymerisations of lactide in solution.

In a representational polymerisation reaction, titanium complex (0.5 mmol) and the required quantity of lactides dried by 4A molecular sieves in advance in toluene (100 mL) were loaded in a flame-dried vessel containing a magnetic bar. The ampulla was immersed in an oil bath at 100 °C. After a certain reaction time, the polymer was isolated by precipitating with cold methanol or refrigerated centrifuge. The solid was collected and dried in vacuo at 35°C for 40 h.

1.4.2 Melt polymerisations of lactide.

In a representational melt polymerisation reaction, titanium complex (0.05 mmol) and lactides (15 mmol, 2.16 g) were loaded in a flame-dried vessel containing a magnetic bar. The ampulla was immersed in an oil bath at 150 °C for 2 h before being cooled to RT. Methanol (20 mL) was added and the solid was dissolved in dichloromethane. The solvents were removed in vacuo and the solid was washed with methanol (50 mL×3) to remove residual monomer. The solid was collected and dried in vacuo at 35°C for 40 h.

2 References

- S1 (a) Z. H. Tang, X. S. Chen, X. Pang, Y. K. Yang, X. F. Zhang, X. B. Jing, *Biomacromolecules* 2004, 5, 965–970. (b) X. Pang, H. Z. Du, X. S. Chen, X. Wang, X. B. Jing, *Chem. –Eur. J.* 2008, 14, 3126–3136. (c) G. M. Sheldrick, SHELXTL, Version 5. 1, Siemens Industrial Automation, Inc., 1997.
- S2 (a) Z. H. Tang, X. S. Chen, Y. K.Yang, X. Pang, J. R. Sun, X. F. Zhang, X. B. Jing, *J Polym Sci Part A: Polym Chem.* 2004, 42, 5974–5982. (b) H. Du, A. H. Velders, P. J. Dijkstra, Z. Y. Zhong, X. S. Chen, J. Feijen, *Macromolecules* 2009, 42, 1058–1066.

S3 B. M. Chamberlain, M. Cheng, D. R. Moore, T. M. Ovitt, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2001, **123**, 3229–3238.