Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015

Electronic Supplementary Information (ESI)

Synthesis, crystal structure, optical and electrochemical properties of novel diphenylether-based formazan derivatives

Gulsen Turkoglu,^a Halil Berber*^a and Ibrahim Kani^a

^aAnadolu University, Faculty of Science, Chemistry Department, 26470 Eskişehir, Turkey.

*Corresponding author. Tel: +90 222 335 05 80; ext. 4827; fax: +90 222 320 49 10

hlberber@anadolu.edu.tr

1. Experimental procedures and characterization data

General Procedure for the Synthesis of 1-(4-methoxybenzylidene)-2-phenylhydrazine (3a).

To a solution of 1.36 g of 4-methoxybenzaldehyde (10.0 mmol) in 25 mL of methanol was added a solution of 1.09 g of phenylhydrazine (0.90 mL, 10.0 mmol) in 25 mL of methanol dropwise at 60 °C. The reaction mixture was stirred for 2 hours and cooled down to room temperature for 30 min. The yellow precipitate was filtered off and dried in an oven at 60 °C. The crude product was recrystallized from methanol. The compound **3a** was obtained as bright yellow needles in 98% yield (2.21 g); m.p. 130–131 °C; FT-IR (KBr, cm⁻¹) v_{max} : 3315 (s), 1365 (s), 1527-1506 (s), 3022 (s), 1596 (s), 1296, 1244 (m). ¹H NMR (500 MHz, CDCl₃): δ 7.62 (s, 1H), 7.60 (d, *J* = 8.70 Hz, 2H), 7.47 (s, 1H), 7.28 (t, *J* = 7.10 Hz, 2H), 7.11 (d, *J* = 8.50 Hz, 2H), 6.91 (d, *J* = 9.00 Hz, 2H), 6.85 (t, *J* = 7.25 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 159.98, 144.95, 137.36, 129.25, 127.56, 119.78, 114.10, 55.32. Anal. Calcd. for C₁₄H₁₄N₂O (226.27, %): C, 74.31; H, 6.24; N, 12.38. Found: C, 74.06; H, 6.23; N, 12.37.

The other compounds (3b-3h) were prepared in a similar manner.

1-(4-Methoxybenzylidene)-2-(4-methoxyphenyl)hydrazine (3b).

^{H₃CO **3b C**CH₃ Light cream solid (crystallized from methanol). Yield 2.11 g (83%); m.p. 138–139 °C; FT-IR (KBr, cm⁻¹) v_{max} : 3309 (s), 1313 (s), 1524-1506 (s), 3031 (s), 1606 (s), 1245 (m). ¹H NMR (500 MHz, CDCl₃): δ 8.06 (s, 1H), 8.06 (d, J = 9.05 Hz, 2H), 7.85 (d, J = 9.15 Hz, 2H), 7.64 (s, 1H), 7.01 (d, J = 8.10 Hz, 2H), 6.93 (d, J = 8.00 Hz, 2H), 3.89 (s, 3H), 3.87 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 162.75, 136.84, 132.26, 131.98, 129.45, 127.37, 114.30, 113.91, 55.57, 55.45. Anal. Calcd. for C₁₅H₁₆N₂O₂ (256.30,}

%): C, 70.29; H, 6.29; N, 10.93. Found: C, 70.45; H, 6.10; N, 11.20.

1-(4-Methoxybenzylidene)-2-(4-chlorophenyl)hydrazine (3c).

3c Light white needles (crystallized from methanol). Yield 1.40 g (77%); m.p. 159–160 °C; FT-IR (KBr, cm⁻¹) v_{max} : 3309 (s), 1357 (s), 1523-1506 (s), 3012 (s), 1606 (s), 1292-1253 (m). ¹H NMR (500 MHz, CDCl₃): δ 7.85 (s, 1H), 7.65 (s, 1H), 7.58 (d, J = 8.52 Hz, 2H), 7.21 (dd, J = 8.15 and 2.32 Hz, 2H), 7.02 (d, J = 8.00 Hz, 2H), 6.91 (d, J = 8.48 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 164.60, 143.52, 138.07, 131.98, 129.36, 128.95, 127.65, 114.13, 113.73, 55.33. Anal. Calcd. for C₁₄H₁₃ClN₂O (260.72, %): C, 64.49; H, 5.03; N, 10.74. Found: C, 64.33; H, 4.95; N, 10.73.

1-(4-Methoxybenzylidene)-2-(4-bromophenyl)hydrazine (3d).

Light cream solid (crystallized from methanol). Yield 1.30 g (80%); m.p. 158–159 °C; FT-IR (KBr, cm⁻¹) v_{max} : 3307 (s), 1357 (s), 1504 (s), 3006 (s), 1604 (s), 1292-1253 (m). ¹H NMR (500 MHz, CDCl₃): δ 7.86 (s, 1H), 7.64 (s, 1H), 7.59 (d, J = 8.40 Hz, 2H), 7.34 (d, J = 9.12 Hz, 2H), 6.97 (d, J = 9.01 Hz, 2H), 6.90 (d, J = 8.28 Hz, 2H), 3.86 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 160.20, 143.96, 138.18, 131.99, 127.68, 114.20, 114.14, 55.34. Anal. Calcd. for C₁₄H₁₃BrN₂O (305.17, %): C, 55.10; H, 4.29; N, 9.18. Found: C, 54.98; H, 4.13; N, 9.06.

1-(4-Methoxybenzylidene)-2-(4-fluorophenyl)hydrazine (3e).

^{3e} Light brown solid (from methanol). Yield 2.03 g (83%); m.p. 140–141 °C; FT-IR (KBr, cm⁻¹) v_{max} : 3311 (s), 1359 (s), 1595-1502 (s), 3020 (s),

1604 (s), 1245-1211 (m). ¹H NMR (500 MHz, CDCl₃): δ 7.84 (s, 1H), 7.66 (s, 1H), 7.58 (d, J = 9.00 Hz, 2H), 7.04 (dd, J = 9.05, 4.53 Hz, 2H), 6.98 (d, J = 8.54 Hz, 2H), 6.90 (d, J = 8.28 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 160.04, 158.06, 156.17, 141.33, 137.61, 132.29, 129.71, 127.98, 115.81, 113.73, 55.32. Anal. Calcd. for C₁₄H₁₃FN₂O (244.26, %): C, 68.84; H, 5.36; N, 11.47. Found: C, 68.60; H, 5.14; N, 11.20.

1-(4-Methoxybenzylidene)-2-(4-nitrophenyl)hydrazine (3f).

1-(4-Methoxybenzylidene)-2-(3,4-dimethylphenyl)hydrazine (3g).

Light brown solid (from methanol). Yield 2.10 g (83%); m.p. 104–106 °C; FT-IR (KBr, cm⁻¹) v_{max} : 3319 (s), 1353 (s), 1510 (s), 3020 (s), 1614 (s), 1298-1247 (m). ¹H NMR (500 MHz, CDCl₃): δ 7.86 (s, 1H), 7.63 (s, 1H), 7.60 (d, J = 8.50Hz, 2H), 7.43 (d, J = 7.80 Hz, 1H), 7.02 (d, J = 8.00 Hz, 1H), 6.91 (d, J = 8.50 Hz, 2H), 6.83 (d, J = 7.50 Hz, 1H), 3.84 (s, 3H), 2.25 (s, 3H), 2.20 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 159.83, 136.78, 136.71, 132.26, 130.22, 128.31, 127.54, 114.05, 110.16, 55.31, 20.03, 18.89. Anal. Calcd. for C₁₆H₁₈N₂O (254.33, %): C, 75.56; H, 7.13; N, 11.01. Found: C, 75.38; H, 6.87; N, 10.92.

1-(4-Methoxybenzylidene)-2-(2,4-dinitrophenyl)hydrazine (3h).

^{3h} Light orange colored powder (from methanol). Yield 2.65 g (84%); m.p. 258–260 °C; FT-IR (KBr, cm⁻¹) v_{max} : 3271 (s), 1330 (s), 1585-1510 (s), 3012 (s), 1622 (s), 1249 (m), 1330 (s). ¹H NMR (500 MHz, CDCl₃): δ 11.07 (s, 1H), 8.94 (s, 1H), 8.14 (dd, J = 8.78, 2.65 Hz, 1H), 7.88 (d, J = 8.32 Hz, 2H), 7.52 (d, J = 8.10 Hz, 2H), 6.78 (d, J = 8.50 Hz, 2H), 3.67 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 162.52, 148.32, 145.33, 144.50, 130.47, 129.84, 126.29, 124.10, 1107.18, 115.04, 55.98. Anal. Calcd. for C₁₄H₁₂N₄O₅ (316.27, %): C, 53.17; H, 3.82; N, 17.71. Found: C, 52.89; H, 3.67; N, 17.64.

2. Crystallographic data for compound 5e.

C2-O2	1.374(3)	F1-C18	1.357(3)
N4-N3	1.277(3)	N4-C15	1.415(3)
N1-C8	1.307(3)	N1-N2	1.335(3)
N3-C8	1.407(3)	N2-C9	1.380(3)
C1-O2	1.422(3)	C9-C14	1.388(4)
C14-O1	1.396(3)	O1-C21	1.390(3)
N3-N4-C15	115.3(2)	N4-N3-C8	114.8(2)
C8-N1-N2	120.1(2)	N3-C8-C5	114.3(2)
C20-C15-N4	125.7(2)	C16-C15-N4	114.1(2)
N1-C8-C5	116.5(2)	C2-O2-C1	116.9(2)
F1-C18-C17	118.2(2)	N1-C8-N3	129.2(2)
N2-C9-C14	118.0(2)	F1-C18-C19	118.4(2)
N2-C9-C10	122.8(2)	N1-N2-C9	120.3(2)
C10-C11-Cl1	118.4(2)	C12-C11-Cl1	119.1(2)
C13-C14-O1	121.4(2)	C9-C14-O1	117.2(2)
C21-O1-C14	118.2(2)	C22-C21-O1	123.5(2)

Table S1 The some selected bond lengths (Å) and angles (°) of compound 5e

3. Absorption spectra λ_{max} values of formazans 5a–5h in various solvents.

Table S2 Absorption spectral λ_{max} values of formazans **5a–5h** in various solvents.

) (nm)									
			/	-max.(11111)					
Comp.	DMSO	DMF	EtOH	МеОН	Acetone	Dioxane	EtOAc		
5a	513	515	501	506	504	507	507		
	293	302	291	289		293	293		
5b	521	513	511,	493	496	500	499		
	301	301	499, 272	299		275	300, 272		
5c	540	531	533	525	523	531	531		
	299	299	522, 298	298		295	298		
5d	533	532	531	521	523	531	531		
	295	298	297	295		296	298		
5e	512	507	508	504	506	507	508		
	294	308	293	294		292	294		
5f	475	499	533	546	526	545	534		
	385	367	367, 301	393, 289	367	362, 300	362, 302		
5g	513	508	501	501	504	504	502		
	301	301	297	297		296	296		
5h	400	390	388	390	384	375, 352	379		
Comp.	Propanol	CHCl ₃	THF	1-Butanol	Toluene	Cyclohexane	n-Hexane		
5a	505	507	509	511	515	510	506		
	293	296	288	293	295	291	291		
5b	500	505	505	498	518	506	494		
	301, 275	303	302	275	302	300, 275	366, 301		
5c	531	531	534	532	538	535	532		
	299	298	302	298	298	298	299		
5d	532	530	530	531	535	533	528		
	298	298	293	296	296	295	297		
5e	509	509	511	510	522	519	516		
	293	296	292	291		292	291		
5f	535	546	537	534	554	551	541		
	360, 304	371, 304	365, 303	365, 303	365	358, 299	360, 305		
5g	503	504	508	504	516	500	500		
	299	299	297	297	299	298	296		
5h	385, 304	384	380, 292	391	378	366	421, 371		

4. NMR Spectra of Final Compounds (5a–5h)

Figure S1 Compound 5a: a) ¹H NMR, b) ¹³C NMR spectrum.

Figure S2 Compound 5b: a) ¹H NMR, b) ¹³C NMR spectrum.

Figure S3 Compound 5c: a) ¹H NMR, b) ¹³C NMR spectrum.

Figure S4 Compound 5d: a) ¹H NMR, b) ¹³C NMR spectrum.

Figure S5 Compound 5e: a) ¹H NMR, b) ¹³C NMR spectrum.

Figure S6 Compound 5f: a) ¹H NMR, b) ¹³C NMR spectrum.

Figure S7 Compound 5g: a) ¹H NMR, b) ¹³C NMR spectrum.

Figure S8 Compound 5h: a) ¹H NMR, b) ¹³C NMR spectrum.