N-heterocyclic carbene - Catalyzed Synthesis of Functionalized 3-hydroxypyrrolidinones via an Aza-Michael/Aldol Domino Reaction

Yanfang Zhu, Chun Cai*

Chemical Engineering College, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China

Table of Contents

General information	S2
General procedures for the preparation of the products	S2
Spectra data of products	S3
Copies of ¹ H and ¹³ C-NMR	S 7
Copies of NOESY ¹ HNMR	S18

^{*} Corresponding author. Tel.: +86-25-84315514; fax: +86-25-84315030; e-mail: c.cai@mail.njust.edu.cn

1 Experimental

1.1 General Remarks

All of the reagents and solvents were commercially available and used without further purification. GC analyses were performed on an Agilent 7890A instrument. ¹H NMR and ¹³C NMR were recorded on Bruker DRX 500 and tetramethylsilane (TMS) was used as a reference. The ¹H NMR spectroscopic data of these precatalysts and products are in agreement with those reported in the literatures. ¹⁻⁷

1.2 General procedure for the Synthesis of 3-hydroxypyrrolidinones (3).

Under N_2 atmosphere, to a solution of catalyst precursor A (0.03 mmol), 1 (0.36 mmol) and 2 (0.3 mmol) in ethanol (2 mL) was added the KO^tBu (0.45 mmol). The reaction was stirred at rt (monitored by TLC) before it was quenched with NH₄Cl (4mL, sat. aq.).The layers were separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine (5 mL), dried (Na₂SO₄) and concentrated in vacuo. Flash column chromatography afforded 3-hydroxypyrrolidinones.

2. Characterization Data

4-benzoyl-3-hydroxy-1, 3, 5-triphenylpyrrolidin-2-one (3a)

White solid; 75% yield. ¹H NMR (500 MHz, DMSO) δ 7.44 (dd, J = 16.9, 7.8 Hz, 4H), 7.39 – 7.33 (m, 3H), 7.32 – 7.25 (m, 5H), 7.23 (t, J = 7.7 Hz, 2H), 7.18 (d, J = 7.7 Hz, 2H), 7.10 (dt, J = 22.6, 7.6 Hz, 4H), 6.83 (s, 1H), 6.16 (d, J = 8.2 Hz, 1H), 4.27 (d, J = 8.2 Hz, 1H); ¹³C NMR (126 MHz, DMSO) δ 193.88, 171.40, 141.22, 138.56, 136.82, 136.20, 132.35, 128.14, 127.91, 127.43, 127.24, 126.90, 125.73, 124.99, 123.60, 79.73, 63.41, 60.17; MS (M⁺), found 433; Anal. calcd for C₂₉H₂₃NO₃: C, 80.15; H, 5.55; N, 3.39; Found: C, 80.35; H, 5.35; N, 3.23.

4-benzoyl-3-hydroxy-5-(4-methoxyphenyl)-1, 3-diphenylpyrrolidin-2-one (3b)

White solid; 69% yield. ¹H NMR (500 MHz, DMSO) δ 7.46 (d, J = 8.1 Hz, 2H), 7.43 – 7.34 (m, 5H), 7.34 – 7.25 (m, 5H), 7.19 (d, J = 7.8 Hz, 2H), 7.11 (dd, J = 16.3, 8.5 Hz, 3H), 6.84 – 6.72 (m, 3H), 6.12 (d, J = 8.2 Hz, 1H), 4.27 (d, J = 8.3 Hz, 1H), 3.63 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 195.03, 172.39, 159.23, 142.38, 137.94, 137.33, 133.41, 131.28, 129.27, 128.96, 128.50, 128.31, 127.95, 126.82, 126.06, 124.84, 114.60, 80.82, 64.61, 60.84, 55.46; MS (M⁺), found 463; Anal. calcd for C₃₀H₂₅NO₄: C, 77.74; H, 5.44; N, 3.02; Found: C, 77.54; H, 5.59; N, 3.32.

4-benzoyl-5-(4-chlorophenyl)-3-hydroxy-1, 3-diphenylpyrrolidin-2-one (3c)

White solid; 75% yield. ¹H NMR (500 MHz, DMSO) δ 7.52 – 7.46 (m, 4H), 7.41 – 7.34 (m, 3H), 7.30 (dd, J = 17.1, 8.1 Hz, 7H), 7.22 (d, J = 7.8 Hz, 2H), 7.14 – 7.04 (m, 3H), 6.89 (s, 1H), 6.22 (d, J = 8.2 Hz, 1H), 4.31 (d, J = 8.2 Hz, 1H).¹³C NMR (126 MHz, DMSO) δ 195.04, 172.49, 142.10, 138.56,

137.74, 137.25, 133.44, 132.98, 130.06, 129.22, 129.08, 128.62, 128.46, 128.29, 128.03, 126.92, 126.20, 124.69, 80.84, 64.30, 60.64; MS (M⁺), found 467; Anal. calcd for $C_{29}H_{22}CINO_3$: C, 74.44; H, 4.74; N, 2.99; Found: C, 74.14; H, 4.94; N, 2.76.

4-benzoyl-3-hydroxy-1, 3-diphenyl-5-(2-(trifluoromethyl) phenyl) pyrrolidin-2-one (**3d**)

White solid; 52% yield. ¹H NMR (500 MHz, DMSO) δ 7.63 (d, J = 7.8 Hz, 2H), 7.58 (d, J = 7.7 Hz, 1H), 7.48 (dd, J = 17.5, 9.1 Hz, 5H), 7.37 (d, J = 4.0 Hz, 2H), 7.32 (t, J = 7.4 Hz, 5H), 7.26 (dd, J = 14.8, 7.1 Hz, 3H), 7.12 (t, J = 7.4 Hz, 1H), 6.72 (s, 1H), 6.19 (d, J = 3.2 Hz, 1H), 4.60 (d, J = 3.2 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 196.27, 173.21, 142.18, 137.98, 137.91, 137.78, 133.67, 133.17, 129.56, 129.13, 129.03, 128.76, 128.69, 127.07, 126.70, 123.98, 80.38, 59.11, 58.26; MS (M⁺), found 501; Anal. calcd for C₃₀H₂₂F₃NO₃: C, 71.85; H, 4.42; N, 2.79; Found: C, 71.77; H, 4.62; N, 2.91.

4-benzoyl-3-hydroxy-1, 3-diphenyl-5-(3-(trifluoromethyl)phenyl)pyrrolidin-2-one (**3e**)

White solid; 70% yield. ¹H NMR (500 MHz, DMSO) δ 7.93 – 7.64 (m, 2H), 7.48 (dt, *J* = 25.2, 8.2 Hz, 4H), 7.43 – 7.34 (m, 3H), 7.34 – 7.21 (m, 7H), 7.09 (q, *J* = 8.1 Hz, 3H), 6.89 (d, *J* = 9.6 Hz, 1H), 6.32 (t, *J* = 8.6 Hz, 1H), 4.40 (t, *J* = 6.9 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 195.39, 172.59, 141.85, 140.81, 137.68, 137.34, 133.39, 132.18, 130.31, 129.12, 128.68, 128.42, 128.24, 128.05, 127.02, 126.27, 125.23, 125.03, 124.66, 80.85, 63.77, 60.85; MS (M⁺), found 501; Anal. calcd for C₃₀H₂₂F₃NO₃:C, 71.85; H, 4.42; N, 2.79; Found: C, 71.75; H, 4.59; N, 2.99.

4-benzoyl-3-hydroxy-1, 3-diphenyl-5-(4-(trifluoromethyl) phenyl) pyrrolidin-2-one (**3f**)

White solid; 72% yield. ¹H NMR (500 MHz, DMSO) δ 7.70 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.3 Hz, 2H), 7.41 – 7.35 (m, 3H), 7.35 – 7.30 (m, 2H), 7.28 (dd, J = 6.4, 3.6 Hz, 3H), 7.23 (d, J = 7.7 Hz, 2H), 7.10 (dt, J = 19.9, 7.8 Hz, 3H), 6.93 (s, 1H), 6.33 (d, J = 8.1 Hz, 1H), 4.35 (d, J = 8.2 Hz, 1H); ¹³C NMR (126 MHz, DMSO) δ 195.04, 172.58, 144.38, 141.98, 137.71, 137.23, 133.44, 129.14, 128.99, 128.67, 128.43, 128.27, 128.04, 126.92, 126.23, 126.08, 124.49, 80.81, 64.06, 60.71; MS (M⁺), found 501; Anal. calcd for C₃₀H₂₂F₃NO₃: C, 71.85; H, 4.42; N, 2.79; Found: C, 71.85; H, 4.58; N, 2.85.

4-(3-chlorobenzoyl)-3-hydroxy-1, 3, 5-triphenylpyrrolidin-2-one (3g)

White solid; 64% yield. ¹H NMR (500 MHz, DMSO) δ 7.40 (d, J = 7.9 Hz, 5H), 7.30 (d, J = 3.9 Hz, 2H), 7.24 (t, J = 7.7 Hz, 5H), 7.19 (t, J = 7.6 Hz, 3H), 7.14 – 7.00 (m, 4H), 6.86 (s, 1H), 6.10 (d, J = 8.2 Hz, 1H), 4.25 (d, J = 8.2 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 193.16, 171.27, 140.90, 138.26, 137.90, 136.74, 132.48, 132.06, 129.37, 128.09, 127.91, 127.58, 127.33, 127.24, 127.14, 125.92, 125.70, 125.05, 123.66, 79.68, 63.63, 59.97; MS (M⁺), found 467; Anal. calcd for C₂₉H₂₂ClNO₃: C, 74.44; H, 4.74; N, 2.99; Found: C, 74.68; H, 4.54; N, 2.79.

4-(4-chlorobenzoyl)-3-hydroxy-1, 3, 5-triphenylpyrrolidin-2-one (**3h**)

White solid; 67% yield. ¹H NMR (500 MHz, DMSO) δ 7.45 (dd, J = 13.2, 7.7 Hz, 4H), 7.35 (dt, J = 9.4, 3.4 Hz, 2H), 7.32 – 7.25 (m, 5H), 7.26 – 7.16 (m, 4H), 7.16 – 7.06 (m, 4H), 6.91 (s, 1H), 6.16 (d, J = 8.1 Hz, 1H), 4.28 (d, J = 8.2 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 194.27, 172.39, 142.07, 139.45, 138.34, 137.85, 136.02, 130.39, 129.22, 129.01, 128.56, 128.36, 128.10, 126.85, 126.12, 124.70, 80.77, 64.57, 61.10 ; MS (M⁺), found 467 Anal. calcd for C₂₉H₂₂ClNO₃: C, 74.44; H, 4.74; N, 2.99; Found: C, 74.63; H, 4.58; N, 2.68.

3-hydroxy-4-(4-methoxybenzoyl)-1, 3, 5-triphenylpyrrolidin-2-one (3i)

White solid; 71% yield. ¹H NMR (500 MHz, DMSO) δ 7.45 (d, J = 8.1 Hz, 2H), 7.42 – 7.36 (m, 4H), 7.34 – 7.26 (m, 5H), 7.21 (t, J = 7.4 Hz, 2H), 7.17 – 7.06 (m, 4H), 6.76 (s, 1H), 6.58 (d, J = 8.1 Hz, 2H), 6.15 (d, J = 8.2 Hz, 1H), 4.19 (d, J = 8.1 Hz, 1H), 3.67 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 193.95, 171.31, 158.15, 141.30, 136.86, 136.25, 132.32, 130.21, 128.19, 127.87, 127.42, 127.22, 126.86, 125.74, 124.97, 123.76, 113.52, 79.74, 63.53, 59.76, 54.38 ; MS (M ⁺), found 463; Anal. calcd for C₃₀H₂₅NO₄: C, 77.74; H, 5.44; N, 3.02; Found: C, 77.48; H, 5.69; N, 3.28.

4-benzoyl-1-(4-fluorophenyl)-3-hydroxy-3, 5-diphenylpyrrolidin-2-one (3j)

White solid; 65% yield. ¹H NMR (500 MHz, DMSO) δ 7.45 (dd, J = 11.9, 8.1 Hz, 4H), 7.35 (d, J = 3.2 Hz, 2H), 7.30 (t, J = 7.5 Hz, 5H), 7.27 – 7.18 (m, 4H), 7.18 – 7.08 (m, 4H), 6.90 (s, 1H), 6.15 (d, J = 8.1 Hz, 1H), 4.29 (d, J = 8.1 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 193.86, 171.42, 141.11, 138.03, 136.20, 133.13, 132.36, 128.17, 127.43, 127.23, 127.02, 126.91, 125.75, 114.80, 114.62, 79.66, 63.43, 60.44; MS (M⁺), found 451; Anal. calcd for C₂₉H₂₂FNO₃: C, 77.15; H, 4.91; N, 3.10; Found: C, 77.45; H, 4.76; N, 2.89.

4-benzoyl-3-hydroxy-1-(4-methoxyphenyl)-3, 5-diphenylpyrrolidin-2-one (3k)

White solid; 78% yield. ¹H NMR (500 MHz, DMSO) δ 7.43 (d, J = 7.6 Hz, 2H), 7.37 (dd, J = 15.5, 6.6 Hz, 5H), 7.31 – 7.21 (m, 5H), 7.21 – 7.13 (m, 3H), 7.09 (t, J = 7.7 Hz, 2H), 6.86 (d, J = 8.9 Hz, 2H), 6.81 (s, 1H), 6.09 (d, J = 8.2 Hz, 1H), 4.26 (d, J = 8.2 Hz, 1H), 3.69 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 195.05, 172.43, 157.45, 142.46, 139.71, 137.31, 133.42, 130.79, 129.22, 128.51, 128.32, 128.07, 127.94, 126.78, 126.38, 114.26, 80.73, 64.57, 61.64, 55.69; MS (M⁺), found 463; Anal. calcd for C₃₀H₂₅NO₄: C, 77.74; H, 5.44; N, 3.02; Found: C, 77.52; H, 5.59; N, 3.24.

3. NMR Spectra of Products

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

4. NOESY ¹NMR Spectra of 3f

