Substituent effects in solution speciation of the mononuclear and dinuclear trimethylplatinum(IV) iodide complexes of pyridines

Biswa Nath Ghosh,^{a,b,*} Dieter Lentz^c and Sabine Schlecht^b

^aDepartment of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur-768018, Odisha, India. E-Mail address: <u>b.chem06@gmail.com</u>, Tel.: +91-8984710201

^bInstitut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.

^cInstitut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34-36, D-14195 Berlin, Germany.

Fig.S1 The 400 MHz ¹H NMR spectrum of mononuclear [PtMe₃(4-Mepy)₂I] in CDCl₃. X is the solvent peak and Y is the peak for water molecules present in CDCl₃. Inset showing the signals for the methyl groups bonded to platinum metal.

Scheme S1 The reaction of tetrameric trimethylplatinum(IV) iodide and mononuclear $[PtMe_3L_2I]$ (L = pyridines) complexes in chloroform showing the labelling.

Fig. S2 400 MHz ¹H NMR spectrum of 1:1 mixture of $[PtMe_3(4-MeOpy)_2I]$ and $[(PtMe_3I)_4]$ in CDCl₃, measured at room temperature. Here ADC = *anti*- $[PtMe_3(4-MeOpy)I]_2$, SDC = *syn*- $[PtMe_3(4-MeOpy)I]_2$ and MC = mononuclear $[PtMe_3(4-MeOpy)_2I]$. X is the solvent peak. Labelling in the platinum-methyl region refers to Scheme S1.

Fig. S3 400 MHz ¹H NMR spectrum of 1:1 mixture of $[PtMe_3(4-Mepy)_2I]$ and $[(PtMe_3I)_4]$ in CDCl₃, measured at room temperature. Here ADC = *anti*- $[PtMe_3(4-Mepy)I]_2$, SDC = *syn*- $[PtMe_3(4-Mepy)I]_2$ and MC = mononuclear $[PtMe_3(4-Mepy)_2I]$. X is the solvent peak. Labelling of methyl groups in the platinum-methyl region refers to scheme S1.

Fig. S4 Aromatic region in the 400 MHz ¹H NMR spectrum of 1:1 mixture of $[PtMe_3(4-Etpy)_2I]$ and $[(PtMe_3I)_4]$ in CDCl₃, measured at room temperature. Here ADC = *anti*- $[PtMe_3(4-Etpy)I]_2$, SDC = *syn*- $[PtMe_3(4-Etpy)I]_2$ and MC = mononuclear $[PtMe_3(4-Etpy)_2I]$. X is the solvent peak.

Fig. S5 Aromatic region in the 400 MHz ¹H NMR spectrum of 1:1 mixture of $[PtMe_3(4-tBupy)_2I]$ and $[(PtMe_3I)_4]$ in CDCl₃, measured at room temperature. Here ADC = *anti*- $[PtMe_3(4-tBupy)_2I]$

^tBupy)I]₂, SDC = syn-[PtMe₃(4-^tBupy)I]₂ and MC = mononuclear [PtMe₃(4-^tBupy)₂I]. X is the solvent peak.

Fig. S6 400 MHz ¹H NMR spectrum of 1:1 mixture of $[PtMe_3(4-Me_2Npy)_2I]$ and $[(PtMe_3I)_4]$ in CDCl₃, measured at room temperature. Here ADC = *anti*- $[PtMe_3(4-Me_2Npy)I]_2$, SDC = *syn*- $[PtMe_3(4-Me_2Npy)I]_2$ and MC = mononuclear $[PtMe_3(4-Me_2Npy)_2I]$. X is the solvent peak.

Table S1 ¹H NMR data^{*a*} for the reaction of trimethylplatinum(IV) iodide with mononuclear [PtMe₃L₂I] (L= pyridines) complexes in CDCl₃

PtMe ₃ L ₂ I	Pt(IV) species	δ(Pt-Me) ^{b, e}	Trans	δ(ligand H) ^{c, e}
complex	present in solution		ligand	
$[PtMe_3(4-NCpy)_2I]^1$	[PtMe ₃ (4-NCpy) ₂ I]	A 1.53 (71.2)	4-NCpy	H 9.04 (6.4) (17.9) ^d
		B 1.18 (67.3)	I	I 7.64 (6.5)
	PtMe ₃ I	C 1.72 (77.3)	Ι	-
	anti-[PtMe ₃ (4-NCpy)I] ₂	D 1.27 (73.9)	Ι	H 9.47 (6.4) (18.5) ^d
		E 1.41 (72.5)	4-NCpy	I 7.67 (6.5)
	syn-[PtMe ₃ (4-NCpy)I] ₂	F 1.25	Ι	H 9.18
		G 2.04 (72.6)	4-NCpy	I 7.37
$[PtMe_3(4-$	[PtMe ₃ (4-MeOpy) ₂ I]	A 1.42 (70.0)	4-MeOpy	H 8.58 (7.0) (19.0) ^d
MeOpy) ₂ I]		B 1.15 (70.2)	I	I 6.80 (7.0)
				OMe 3.89
	PtMe ₃ I	C 1.72 (77.3)	I	-
	$anti-[PtMe_3(4-MeOpy)I]_2$	D 1.27 (75.1)	I	H 9.04 (6.9) (19.7) d
		E 1.38 (71.0)	4-MeOpy	16.86 (7.0)
		F 1 24 (75 2)	т	OMe 3.92
	$syn-[PtMe_3(4-MeOpy)I]_2$	F 1.24 (75.2)		$H 8./3 (6.8) (19.5)^{u}$
		G 1.93 (71.0)	4-MeOpy	10.51(0.9)
[DtMa (4 Many) 1]2	[DtMa (4 Mapy) I]	A 1 45 (70 0)	4 Manu	$U_{1} = 0.000 \text{ J}$
$[Puvie_3(4-wiepy)_21]^2$		A 1.43 (70.0) B 1 17 (70.0)	4-iviepy	$\Pi 8.01 (0.4) (19.0)$
		D 1.17 (70.0)	1	$M_{\rm P} = 2.38$
	PtMeal	C 1 72 (77 3)	1	-
	anti-[PtMe ₂ (4-Meny)]] ₂	D 1 27 (75.1)	I	H 9 08 (6 5) (19 6) d
		E = 1.27 (75.1) E = 1.37 (71.1)	4-Meny	17 19 (6 0)
			i mepy	Me 2.41
	svn-[PtMe ₃ (4-Mepy)I] ₂	F 1.25 (75.1)	Ι	H 8.76 (6.4) (19.2) ^d
		G 1.97 (71.1)	4-Mepy	I 6.84 (5.8)
			10	Me 2.33
[PtMe ₃ (4-Etpy) ₂ I]	[PtMe ₃ (4-Etpy) ₂ I]	A 1.45 (70.1)	4-Etpy	H 8.64 (6.4) (18.9) ^d
		B 1.18 (70.2)	I	I 7.15 (6.4)
				CH ₂ 2.68
				Me 1.27
	PtMe ₃ I	C 1.72 (77.3)	I	-
	$anti-[PtMe_3(4-Etpy)I]_2$	D 1.28 (75.1)	I	H 9.11 (6.6) (19.8) ^d
		E 1.36 (71.0)	4-Etpy	I 7.21 (6.3)
				CH ₂ 2.72
		E 1 20 (75 1)	т	Me 1.30
	$syn-[PtMe_3(4-Etpy)]_2$	F 1.28 (75.1)] 1 []	$H = 8.79(6.5)(19.4)^{u}$
		01.99(/1.1)	4-Etpy	10.00(0.1)
				$M_{\rm P} = 1.26$
[PtMe ₂ (4 ^t Runy) ₂]]	[PtMe ₂ (4- ^t Rupy) ₂ I]	A 1 45 (69 9)	4- ^t Bupy	H 8 66 (6 5) (10 0) d
		B 1 19 (70 1)	I	1730(67)
				^t Bu 1.33
	PtMe ₃ I	C 1.72 (77.3)	I	-
	anti-[PtMe ₃ (4- ^t Buby)]] ₂	D 1.30 (75.1)	Ι	H 9.12 (6.6) (19.8) ^d
	L	E 1.35 (70.8)	4- ^t Bupy	17.36 (6.6)
			Ľ J	^t Bu 1.35

	syn-[PtMe ₃ (4- ^t Bupy)I] ₂	F 1.34 (75.1)	Ι	H 8.82 (6.6) (19.4) ^d
		G 2.01 (71.2)	4- ^t Bupy	I 7.09 (6.4)
				^t Bu 1.32
[PtMe ₃ (4-	$[PtMe_3(4-Me_2Npy)_2I]$	A 1.35 (69.3)	4-Me ₂ Npy	H 8.29 (7.2) (19.6) ^d
$Me_2Npy)_2I]^1$		B 1.14 (71.5)	Ι	I 6.40 (7.2)
				NMe ₂ 3.02
	PtMe ₃ I	C 1.72 (77.3)	Ι	-
	$anti-[PtMe_3(4-Me_2Npy)I]_2$	D 1.27 (75.6)	Ι	H 8.74 (7.1) (20.6) ^d
		E 1.39 (70.0)	4-Me ₂ Npy	I 6.49 (7.1)
				NMe ₂ 3.05
	syn-[PtMe ₃ (4-Me ₂ Npy)I] ₂	F 1.27 (75.6)	Ι	H 8.48 (7.0) (20.3) ^d
		G 1.90 (70.1)	4-Me ₂ Npy	I 6.20 (7.0)
				NMe ₂ 2.99

^{*a*}Chemical shifts quoted in ppm are relative to an internal solvent peak (CDCl₃, δ 7.26 ppm). ^{*b*} ²J_{Pt-H}/Hz in parentheses. ^{*c*} ³J_{H-H}/Hz in parentheses. ^{*c*} ³J_{H-H}/Hz in parentheses. ^{*c*} ³J_{Pt-H}/Hz in parentheses. ^{*c*} ¹J_{Pt-H}/Hz in parentheses. [*]*

Table S2 Crystallographic data and structure refinement for mononuclear $[PtMe_{3}L_{2}I]$ complexes

Complex	[PtMe ₃ (4-NCpy) ₂ I]	[PtMe ₃ (4-Mepy) ₂ I]	[PtMe ₃ (4-Etpy) ₂ I]
CCDC No.	1037991	866046	823795
Empirical formula	$C_{15}H_{17}IN_4Pt$	$C_{15}H_{23}IN_2Pt$	$C_{17}H_{27}IN_2Pt$
Formula weight	575.32	553.34	581.39
T/K	123(2)	123(2)	133(2)
$\lambda / \text{\AA}$	0.71073	0.71073	0.71073
Crystal color, shape	colorless, block	colorless, block	yellow, block
Crystal size/mm ³	0.300 x 0.200 x 0.100	0.380x0.140x0.140	0.410x0.210x0.180
Crystal system	Triclinic	monoclinic	monoclinic
Space group	<i>P</i> -1	$P2_1/n$	$P2_1/c$
<i>a</i> / Å	9.7124(5)	11.1252(4)	12.0156(17)
b / Å	10.2867(5)	12.8648(5)	12.0304(17)
<i>c</i> / Å	10.3892(5)	12.2536(3)	13.4566(19)
α / \circ	70.911(3)	90	90.00
β / \circ	66.286(3)	98.742(2)	102.370(3)
γ / °	73.069(3)	90	90.00
V / Å ³	882.64(8)	1733.40(10)	1900.0(5)
Ζ	2	4	4
$D_{calc.}$ (g cm ⁻³)	2.165	2.120	2.032
μ / mm^{-1}	9.696	9.866	9.007
F(000)	532	1032	1096
θ / \circ	2.70 to 25.25	3.12 to 25.25	2.29 to 30.58
Completeness to θ_{full}	98.9 %	99.2%	99.9 %
Reflections collected	6324	10387	30865
Independent reflections	3174 [R(int) =	3119 [R(int) = 0.0281]	5833 [R(int) = 0.0201]
	0.0243]		
Absorption correction	multi-scan	multi-scan	multi-scan
Max. and min. trans.	0.7457, 0.4643	0.7457, 0.4865	0.433, 0.238
Data/restraints	3174/0/193	3119 / 0 / 177	5833/0/195
/parameters			
Goodness-of-fit on F^2	1.049	1.079	1.079
Final R indices	R1 = 0.0215,	R1 = 0.0189,	R1 = 0.0146,
$[I > 2\sigma(I)]$	wR2 = 0.0508	wR2 = 0.0398	wR2 = 0.0344
<i>R</i> indices (all data)	R1 = 0.0235,	R1 = 0.0220,	R1 = 0.0184,
	wR2 = 0.0514	wR2 = 0.0410	wR2 = 0.0359
Largest diff. peak and hole/ $eÅ^{-3}$	0.936, -1.136	0.589, -0.514	0.598, -1.298

Complex	syn-[PtMe ₃ (4-	anti-[PtMe ₃ (4-	syn-[PtMe ₃ (4-	syn-[PtMe ₃ (4-
CCDC No	1027002	1027002	1027004	L(py)1] ₂
Empirical	C H I N D+	C H I N D+	$\frac{1037994}{C H I N O Pt}$	C H I N Dt
formula	$C_{18}\Pi_{26}I_{2}I_{4}\Gamma_{12}$	$C_{18}\Pi_{26}I_{2}I_{4}\Gamma_{12}$	$C_{18}\Pi_{32}I_{2}I_{2}O_{2}\Gamma_{2}$	$C_{20}\Pi_{36}I_{2}IN_{2}\Gamma I_{2}$
Formula weight	942 41	0/12/11	952 /3	9/18/10
T / K	173(2)	173(2)	103(2)	103(2)
$\frac{1}{\lambda}$	0.71073	0.71073	0.71073	0.71073
Crystal color	nale-vellow block	colorless block	vellow block	vellow plate
shape	pare-yenow, block	coloriess, block	yellow, block	yenow, plate
Crystal size/mm ³	0.450x0.350x0.160	0.380x0.240x0.160	0.240x0.230x0.180	0.340x0.320x0.160
Crystal system	monoclinic	Monoclinic	monoclinic	orthorhombic
Space group	$P2_1/n$	$P2_1/c$	$P2_1/n$	Pnam
a / Å	8.88211(18)	8.0595(2)	10.4070(9)	10.7003(10)
<i>b</i> / Å	12.0880(2)	11.2505(3)	11.7649(6)	12.7871(9)
<i>c</i> / Å	22.6364(5)	13.6434(4)	20.7823(17)	18.4091(17)
α/°	90	90	90	90
β/°	99.0938(19)	106.090(3)	98.377(10)°	90
y/°	90	90	90	90
V / Å ³	2399.86(9)	1188.64(6)	2517.4(3)	2518.8(4)
Ζ	4	2	4	4
D_{calc} (g cm ⁻³)	2.608	2.633	2.513	2.501
μ/mm^{-1}	14.228	14.363	13.568	13.554
F(000)	1696	848	1728	1728
θ / \circ	1.92 to 25.00	2.39 to 25.25	2.34 to 25.25	3.33 to 25.00
Completeness to	99.9 %	99.9 %	99.6 %	96.2%
$ heta_{ m full}$				
Reflections	8366	4366	17067	16248
collected				
Independent	4241	2161	4544	2215
reflections	[R(int) = 0.0335]	[R(int) = 0.0299]	[R(int) = 0.0537]	[R(int) = 0.0646]
Absorption	analytical	Gussian	multi-scan	multi-scan
Max and min	0 344 0 147	0 405 0 159	0 1115 0 0529	0 1480 0 0562
trans.	0.511, 0.117	0.100, 0.109	0.1115, 0.0525	0.1400, 0.0502
Data/restraints	4241 / 0 / 241	2161 / 0 / 122	4544 / 0 / 245	2215 / 0 / 127
/parameters				
Goodness-of-fit	1.042	1.064	0.928	1.050
$On F^2$	D1 0.0202	D1 0.0221	D1 0.0222	D1 0.0251
Final K	$K_1 = 0.0302$,	$K_1 = 0.0331,$	KI = 0.0232,	KI = 0.0351,
indices $[1 > 2\sigma(1)]$	WK2 = 0.0649	WK2 = 0.0868	WK2 = 0.0493	WK2 = 0.0925
κ indices (all data)	$K_1 = 0.0339$,	$K_1 = 0.0349$,	KI = 0.0334,	$K_1 = 0.0384,$
uata)	WK2 = 0.0669	WK2 = 0.088 /	WK2 = 0.0512	WK2 = 0.094 /
Largest diff.	1.431, -1.323	2.079, -1.932	0.844, -0.8///	2.340, -2.403
peak and note/				
CA-J				

Table S3 Crystallographic data and structure refinement for dinuclear $[PtMe_{3}LI]_{2}$ complexes

Table S4 Selected bond lengths (Å) and angles (°) in mononuclear [PtMe₃L₂I] complexes (L = 4-NCpy, 4-Mepy, 4-Etpy)

Complex	[PtMe ₃ (4-NCpy) ₂ I]	[PtMe ₃ (4-Mepy) ₂ I]	[PtMe ₃ (4-Etpy) ₂ I]
Pt1-C1	2.053(4)	2.058(4)	2.053(2)
Pt1-C2	2.044(5)	2.055(4)	2.053(3)
Pt1-C3	2.077(4)	2.061(3)	2.069(3)
Pt1-N1	2.200(3)	2.176(3)	2.175(2)
Pt1-N2	2.185(4)	2.186(3)	2.189(2)
Pt1-I1	2.7784(3)	2.7723(3)	2.7771(4)
N1-Pt1-N2	88.57(12)	89.10(10)	90.67(6)
C1-Pt1-N1	178.77(16)	178.37(15)	176.89(9)
C2-Pt1-N2	177.02(15)	176.97(14)	178.58(9)
C3-Pt1-I3	177.99(14)	177.19(10)	178.11(7)

Table S5 Selected bond lengths (Å) and angles (°) in dinuclear [PtMe₃LI]₂ complexes

anti-[PtMe ₃ (4-NCpy)I] ₂				
• • • • •	•			
Pt1-C1	2.047(9)	C1-Pt1-N1	178.9(3)	
Pt1-C2	2.056(9)	C2-Pt1-I1	179.0(2)	
Pt1-C3	2.057(9)	C3-Pt1-I1	177.2(3)	
Pt1-N1	2.210(6)	Pt1-I1-Pt1a	92.46(2)	
Pt1-I1	2.7956(6)	I1-Pt1-I1a	87.54(2)	
syn-[PtMe ₃ (4-NCpy)	I] ₂			
Pt1-C1	2.029(7)	C1-Pt1-N1	179.1(2)	
Pt1-C2	2.045(7)	C2-Pt1-I2	178.3(2)	
Pt1-C3	2.041(6)	C3-Pt1-I1	178.6(2)	
Pt2-C4	2.043(7)	C4-Pt2-N4	177.5(2)	
Pt2-C5	2.051(6)	C5-Pt2-I2	177.3(2)	
Pt2-C6	2.043(7)	C6-Pt2-I1	179.6(2)	
Pt1-N1	2.197(6)	Pt1-I1-Pt2	92.89(2)	
Pt2-N2	2.210(6)	Pt1-I1-Pt2	93.06(2)	
Pt1-I1	2.7916(5)	I1-Pt1-I2	86.67(2)	
Pt1-I2	2.7927(5)	I1-Pt2-I2	86.89(2)	
Pt2-I1	2.7908(5)			
Pt2-I2	2.7818(5)			
syn-[PtMe ₃ (4-MeOpy)I] ₂				
Pt1-C1	2.053(8)	C1-Pt1-N1	177.0(3)	
Pt1-C2	2.054(8)	C2-Pt1-I1	179.6(3)	
Pt1-C3	2.044(7)	C3-Pt1-I2	176.8(3)	

Pt2-C4	2.047(9)	C4-Pt2-N2	177.2(3)
Pt2-C5	2.036(9)	C5-Pt2-I2	178.5(3)
Pt2-C6	2.029(8)	C6-Pt2-I1	177.7(3)
Pt1-N1	2.188(6)	Pt1-I1-Pt2	93.16(2)
Pt2-N2	2.181(6)	Pt1-I1-Pt2	92.64(2)
Pt1-I1	2.7839(5)	I1-Pt1-I2	86.92(2)
Pt1-I2	2.8116(5)	I1-Pt2-I2	86.82(2)
Pt2-I1	2.8020(5)		
Pt2-I2	2.7987(5)		
syn-[PtMe ₃ (4-Etpy)]	2		
Pt1-C1	2.054(8)	C1-Pt1-N1	178.3(3)
Pt1-C2	2.034(9)	C2-Pt1-I2	178.1(3)
Pt1-C3	2.061(9)	C3-Pt1-I1	178.4(2)
Pt1-N1	2.189(5)	Pt1-I1-Pt1a	92.00(2)
Pt1-I1	2.7785(6)	Pt1-I2-Pt1a	93.64(2)
Pt1-I2	2.8166(6)	I1-Pt1-I2	86.81(1)

References

- 1. B. N. Ghosh, H. Hausmann, M. Serafin, D. Lentz and S. Schlecht, Z. Anorg. Allg. Chem., 2013, 639, 2202-2208.
- 2. D. E. Clegg, J. R. Hall and G. A. Swile, J. Organomet. Chem., 1972, 38, 403-420.