Supporting Information

Preparation of Polymer decorated Graphene Oxide by γ-Ray Induced Graft Polymerization

Bowu ZHANG, ^{*a, b*} Yujie ZHANG, ^{*c*} Cheng PENG, ^{*a*} Ming YU, ^{*a*} Linfan LI, ^{*a*} Bo DENG, ^{*a*} Pengfei HU, ^{*d*} Chunhai FAN, ^{*a*} Jingye LI *^{*a*} and Qing HUANG*^{*a*}

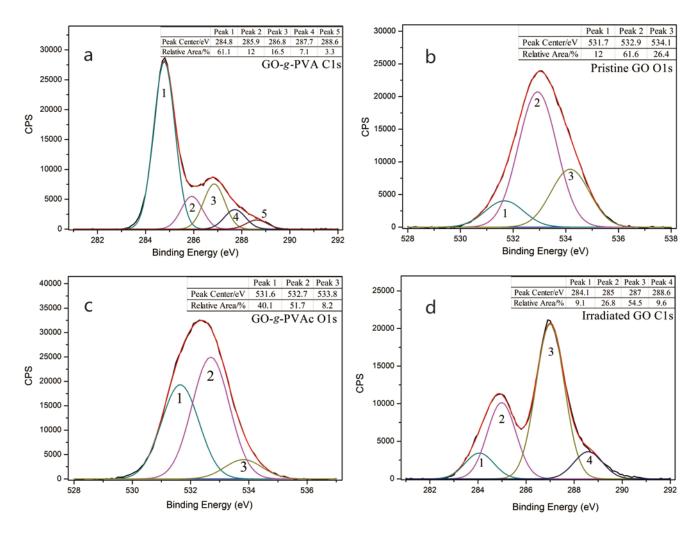
^{*a*} Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading District, Shanghai 201800, China. Fax. & Tel. <u>+86-21-3919-4505;</u> *E-mail jingyeli@sinap.ac.cn; huangqing@sinap.ac.cn.*

^b Graduate University of the Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China

^c Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, No. 519 Zhuangshi Road, Zhenhai District, Ningbo 315201, China

^d Laboratory for Microstructures, Shanghai University, NO.99 Shangda Road, Baoshan District., Shanghai 200444, China

Experimental section


The hydrolysis of GO-g-PVAc

GO-g-PVAc (20 mg) was dispensed in 20 mL methanol by sonication for 30 minutes, and then 0.2 mL 25 wt% NaOH methanol solutions was added and stirred at room temperature for 24 hours. After that, excessive water was added into the solution. Then the mixture was filtrated with 0.22 μ m acetyl cellulose membrane and the GO-g-PVA was obtained by removal of acetyl cellulose membrane and dried in vacuum oven at 60 °C overnight.

Caption of Figure and Table:

Figure S1 XPS C1s spectra of (a) GO-g-PVA and (d) γ -ray irradiated GO; O1s spectra of (b) GO and (d) GO-g-PVAc.

Figure. S2 Photos of the dispersion of γ -ray irradiated GO in various organic solvents. The pictures were taken 1 hour after preparation.

Figure S1a shows the relative area of C=O peak at 288.6 eV is decreased to 3.3, which is similar to that of GO, and the peak at 286.8 eV also decreased by comparing with that GO-*g*-PVAc, when GO-*g*-PVAc is hydrolyzed. These results demonstrate the grafted PVAc chain is almost complete hydrolysis.

Figure S1b&c show three Gaussian peaks at 531.6 eV (C=O group), 532.8 eV (C-OH/C-O) and 534.1 eV (H₂O) in both GO and GO-g-PVAc samples. After the grafted PVAc onto GO, the intensity of C=O group (531.6 eV) is increased obviously, and the H₂O peak decreased, which would indicated the replacement of water by PVAc chains in the interlayers.

Figure S1d shows the peak of graphite Carbon is extremely weaken and a very strong peak at 285 eV is appeared, which can be assigned to the peak of C-H. Additionally, the intensity of C-O/epoxy (287 eV) and carbonyl groups (288.8 eV) are also increased obviously. That is mean GO has reacted with the radiolysis products (i.e., ${}^{\circ}C_{2}H_{5}$, $CH_{3}COO^{\circ}$ and ${}^{\circ}CH_{2}COOC_{2}H_{5}$).

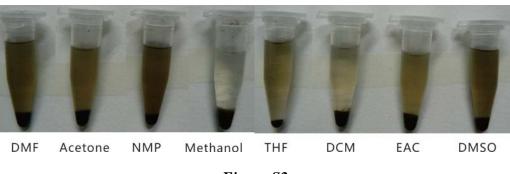


Figure S2

Figure S2 shows that the GO irradiated in pure EAc by γ -ray cannot form stable dispersion in the common organic

solvents.