Nanoscale

Synthesis of Polymer/Inorganic Nanocomposite Films using Highly Porous Inorganic Scaffolds

Huanjun Zhang,^a Matthias Popp,^b Andreas Hartwig^b and Lutz Mädler^{*a}

^a Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Badgasteiner Strasse 3, 28359 Bremen, Germany. Fax: +49 421 2185378; Tel: +49 421 21851200; E-mail: Imaedler@iwt.uni-bremen.de

^b Fraunhofer–Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Strasse 12, 28359 Bremen, Germany.
Fax: +49 421 2246430; Tel: +49 421 2246470; E-mail: andreas.hartwig@ifam.fraunhofer.de

Enclosure: Three figures

Fig. S1 The morphology/structure evolution of the polycyanoacrylate/SnO₂ composite films: a) 10 min, b) 30 min, c) 60 min, d) 120 min and e) 180 min. The shown SEM images were recorded at the film/glass interface region for each sample.

Fig. S2 Effects of refreshing the monomer reservoir on the nanocomposite film growth: refreshing twice the monomer reservoir during the polymerization process results in a thicker (57 μ m) nanocomposite film than that obtained without refreshing the monomer reservoir (48 μ m). Note that the two SnO₂ layers were prepared here with a larger nozzle-to-substrate distance (25 cm, as compared with 20 cm to prepare layers reported in Fig. 4). The larger distance results in a thinner SnO₂ scaffold layer, and subsequently, leads to a thinner composite film in this figure (sample (b), 48 μ m) than that reported in Fig. 4b.

Fig. S3 Powder XRD patterns of the undoped and 1wt% Sb-doped SnO₂ samples (color in electronic file).