Electronic Supplementary Information

Large-scale synthesis of Cu₂SnS₃ and Cu_{1.8}S hierarchical microspheres as efficient counter electrode materials for quantum dot sensitized solar cells

Jun Xu, Xia Yang, Tai-Lun Wong and Chun-Sing Lee*

Department of Physics and Materials Science, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, (P. R. China)

* To whom all correspondences should be addressed. E-mail: apcslee@cityu.edu.hk (C.S. Lee)

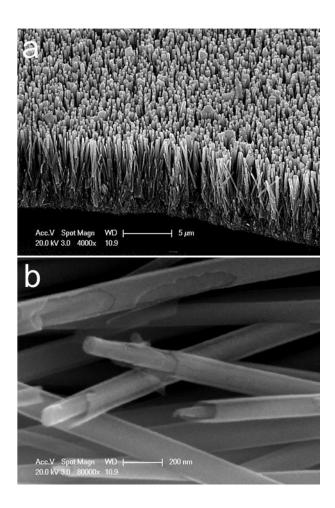


Fig. S1 (a) SEM image of an array of ZnO/ZnSe/CdSe core/shell nanocables, showing the nanocables with lengths of \sim 7 μ m and diameters of 150–200 nm; (b) SEM image of some broken nanocables, showing the core/shell structure.

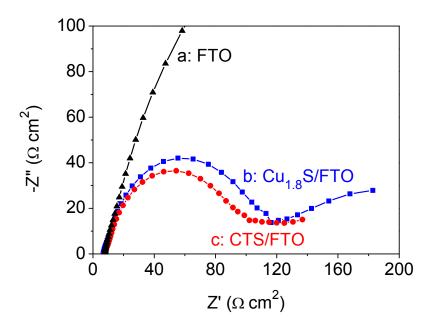


Fig. S2 Nyquist plots of real solar cells containing the same photoanode of ZnO/ZnSe/CdSe nanocables and various counter electrodes of (a) FTO, (b) $Cu_{1.8}S/FTO$, and (c) CTS/FTO. The result reveals that R_{ct} value of the CTS/FTO-based solar cell is much smaller than that of the $Cu_{1.8}S/FTO$ -based solar cell.