Electronic Supplementary Information

Nanoscaled Tin Dioxide Films Processed From Organotin-based Hybrid Materials: An Organometallic Route Toward Metal Oxide Gas Sensors

Laetitia Renard,^a Odile Babot, ^a Hassan Saadaoui,^b Hartmut Fuess,^c Joachim Brötz,^c Aleksander Gurlo,^c Emmanuel Arveux,^c Andreas klein,^c and Thierry Toupance^{*a}

^a Institut des Sciences Moléculaires, ISM UMR 5255 CNRS Groupe Matériaux, University of Bordeaux, 33405 Talence Cédex, France. Fax: + 33 5 40006994; Tel: + 33 5 40002523; E-mail: <u>t.toupance@ism.u-bordeaux1.fr</u>

^b Centre de Recherche Paul Pascal, CRPP UPR8641 CNRS, 33600 Pessac, France. Fax: + 33 5 56845600; Tel: + 33 5 56845632.

^c Fachbereich Material- und Geowissenschaften, Technische Universitaet Darmstadt, 64287 Darmstadt, Germany. Fax: + 49 6151 166346; Tel: + 49 6151 166342.

Characterization of the hybrid thin films

The complete hydrolysis of precursors **1** and **2** in the spin-coated hybrid thin films was checked by FTIR spectroscopy. For instance, the stretching vibration band of the Sn-C=C bond at 2169 cm⁻¹has disappeared in the thin film prepared from **1** after drying at 120°C for one hour (Figure S1) showing that all the alkynyl groups have been removed.

<u>Figure S1</u>: FTIR spectra of **1** (dotted line) and TF_1^{120} (full line).

Furthermore, the GIXRD patterns of the hybrid thin films showed diffraction features at rather low angle consistent with the formation of self-assembled tin-based hybrid thin film as described in *Chem. Commun.* **2011**, *47*, 1464.

<u>Figure S2</u>: GIXRD patterns of TF_1^{120} (full line) and TF_2^{120} (dotted line).

Thermogravimetry coupled to mass spectrometry

The trends of molecular ion fragments as a function of the temperature detected for the hybrid material prepared from precursors **1** and **2** are given Figures S1 and S2.

<u>Figure S3</u>: m/z curves as a function of temperature for the hybrid material prepared from **1** m/z = 18 (H₂O); m/z = 44 (CO₂); m/z = 41, 72 (THF); m/z = 42 (C₃H₆^{.+}); m/z = 56 (C₄H₈⁺⁺), m/z = 84 (C₆H₁₂^{.+}), m/z = 126 (C₉H₁₈^{.+}).

<u>Figure S4</u>: m/z curves as a function of temperature for the hybrid material prepared from **2** m/z = 17, 18 (H₂O); m/z = 76 (C₆H₄^{.+}); m/z = 77 (C₆H₅^{.+}), m/z = 78 (C₆H₆^{.+}), m/z = 165 (C₁₃H₉^{.+}), m/z = 166 (C₁₃H₁₀^{.+}). m/z = 167 (C₁₃H₁₁^{.+}).

X-ray Photoelectron Spectroscopy for thin films prepared from 2

The XPS spectra of the TF_2^{120} (A), TF_2^{500} (B) and TF_2^{600} (C) films are given in Figures S3 and S4.

<u>Figure S5</u>: X-ray Photoelectron survey spectra of TF_2^{120} , TF_2^{500} and TF_2^{600} .

<u>Figure S6</u>: X-ray Photoelectron spectra of a) TF_2^{120} , (b) TF_2^{500} and (c) TF_2^{600} : Sn3d and O1s regions

Surface morphology of the ${\rm TF_2}^{600}$ film

The surface morphology of TF_2^{600} is depicted in Figure S5.

<u>Figure S7</u>: A: SEM images of TF_2^{600} ; B, C: AFM topography images