Supporting information

Mesoporous Silica Nanospheres Decorated with CdS Nanocrystals for Enhanced Photocatalytic and Excellent Antibacterial Activities

Jin-Lin Hu^a, Qi-Hao Yang^a, He Lin^a, Yu-Pei Ye^a, Qiao He^a, Jie-Ni Zhang^a, Hai-Sheng Qian^{*,b}

Fig. S1 SEM image of silica composite nanospheres obtained from 1000 μ L tetraethyl orthosilicate (TEOS) and 400 μ L octadecyltrimethoxysilane (C18TMS) at room temperature for 24 hours.

Table S1 Element composition of the as-prepared SiO₂/CdS mesoporous nanospheres from EDX analyses.

Element	Weight%	Atomic%
0	27.40	51.90
Si	23.50	25.40
S	0.090	0.090
Cd	05.60	01.50
Cu	42.50	20.30
Totals 100.00		

Fig. S2 UV-vis spectra showing photodecomposition of RhB dye in solution (3.0 mg/L) over the $SiO_2@CdS$ mesoporous nanospheres (40 mg) obtained from 0.2 mmol cadmium acetate ($Cd(Ac)_2·2H_2O$) and 0.4 mmol thiourea via the process represented in Fig. 1 under visible light irradiation.

Fig. S3 FESEM images of the mesoporous $SiO_2@CdS$ nanospheres obtained from 0.6 mmol cadmium acetate (Cd(Ac)₂·2H₂O) and 1.2 mmol thiourea via the process represented in Fig. 1 (a) A general view of the mesoporous $SiO_2@CdS$ nanospheres; (b) A magnified SEM image of the nanospheres.

Fig. S4 XRD pattern of the as-prepared sample obtained from the reaction of 0.6 mmol cadmium acetate and 1.2 mmol thiourea according to the same protocol.