Supporting Information for Synthesis and strong near-infrared fluorescence of LiLa_{1-x}Nd_x(PO₃)₄ nanocrystals with high doping concentration

Zhongyue Wang,^a Xiaoxia Cui,^{*c} Ruilin Zheng,^b Weikuan Duan,^a Bo Peng^{ac} and Wei Wei^{*bc}

^a Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P.R. China.

^b School of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P.R. China. E-mail: <u>iamww@fudan.edu.cn</u>

^c State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an 710119, P.R. China. E-mail: <u>cuixx2008@163.com</u>

Experimental Section

Chemicals. HNO₃ (GR, 65-68%), CH₄N₂O (AR) and ammonia solution (GR, 25-28%) were obtained from Aladdin Chemistry Co., Ltd. Urea while LiNO₃ (99%), Nd $(NO_3)_3 \cdot 6H_2O$ (99.9%), La $(NO_3)_3 \cdot 6H_2O$ (99.9%) and NH₄H₂PO₄ (98%) was provided by Alfa Aesar.

Preparation of LLNP nanocrystals. In this work, the LLNP nanocrystals were synthesized via combustion method. Taking LiNd(PO₃)₄ nanocrystals as an example, CH₄N₂O was added into 20mL aqueous solution containing 2mmol LiNO₃ and 2mmol Nd(NO₃)₃ under agitation. Then the solution of 8mmol NH₄H₂PO₄ in 10 mL deionized water was added into above solution dropwise after the pH was adjusted. After drying to honeycomb in blast oven at 80°C, the precursor was treated at 750°C for 10min following combustion reaction. The collected product was washed and dried at 60°C for 48h under vacuum.

Characterization. The X-ray diffraction (XRD) patterns of the samples were measured on a Bruker D8 Advance X-ray powder diffractometer with graphite monochromatized Cu Ka radiation (k_a =0.15405 nm). The Fourier transform infrared (FT-IR) spectra was obtained on a Shimadzu IRPrestige-21 FT-IR spectrophotometer in the wavenumber range of 400~4000cm⁻¹ at a resolution of 2cm⁻¹, on a pressed pellet of the powdered sample dispersed in KBr. The morphologies were characterized by a JEOL JEM-3010 transmission electron microscope (TEM) under a 300 kV working voltage. The emission spectra and luminescence decay times of all the samples were measured by full-featured steady state/transient fluorescence spectrometer FLS920 from Edinburgh Instruments.

Empirical formula	NdP ₅ O ₁₄	LiNdP ₄ O ₁₂	LiNd(PO ₃) ₄
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space Group	P21/a	I2/a	C2/c
Cell parameters	a=13.03Å,	a=13.25Å,	a=16.487Å,
	b=9.001Å,	b=7.008Å,	b=7.043Å,
	c=8.768Å,	c=9.844Å,	c=9.754Å,
	β=90.48°	β=90.1°	β=126.46°
Volume(Å ³)	1028.3	914.1	910.9
Z	4	4	4
Density(g/cm ⁻³)	3.38	3.393	3.406
JCPDS	24-0782	29-0812	34-0003
d _{min(Nd-Nd)} (Å)	5.192	5.62	5.644
$c (10^{21} cm^{-3})$	3.88	4.37	4.39
τ (μs)	110	120	120
$\sigma(10^{-19} \mathrm{cm}^2)$	2.5	3.2	3.2
ref	1, 2	3, 4, 5	6, 7

Table S1 Crystal data and structure refinement for NdP_5O_{14} , $LiNdP_4O_{12}$ and

LiNd(PO₃)₄

Wavenumber	Assignment
1310, 1240	$v_{\rm as}$ (PO ₂)
1149, 1083, 1067	$v_{\rm s} ({\rm PO}_2)$
1012, 932	v _{as} (POP)
812, 754, 735, 685	$v_{\rm s}$ (POP)
596, 575, 560, 522	δ (PO ₂)
474, 457, 436	δ (POP)

Table S2 FT-IR spectral data (cm⁻¹) and band assignments for LiNd(PO₃)₄

Fig.S1 Emission intensities $({}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} \text{ and } {}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2})$ of LiLa_{1-x}Nd_x(PO₃)₄ nanocrystals and their ratio dependence on the Nd³⁺ doping concentration

Fig.S2 The curve of fluorescence lifetimes (τ) dependence on Nd³⁺ concentration in LiLa_{1-x}Nd_x(PO₃)₄ nanocrystals

References

- 1. H. G. Danielmeyer. Festkorperprobleme 15. 1975, 15,253
- 2. M. M. Choy, W. K. Zwicker, S. R. Chinn. Appl. Phys. Lett. 1979, 34, 387
- 3. H. Y-P. Hong. Mat. Res. Bull. 1975, 10, 635.
- 4. K. Otsuka, T. Yamada, M. Saruwatari, T. Kimura. IEEE J. QE. 1975, 11, 330.
- 5. K. Kubodera, K. Otsuka, S. Miyazawa. Appl. Opt. 1979, 18, 884.
- 6. H. Ettis, H. Naili, T. Mhiri. J. Solid. State Chem. 2006, 179, 3107.
- 7. W. W. Kruhler, R. D. Plattner, W. Stetter. Appl. Phys. 1979, 20, 329.