Supporting Information

Synthesis of few-layer MoS₂ nanosheet-coated electrospun SnO₂ nanotube heterostructures for enhanced hydrogen evolution reaction

Yunpeng Huang ^a, Yue-E Miao ^a, Longsheng Zhang ^a, Weng Weei Tjiu ^b, Jisheng Pan ^b, Tianxi Liu ^{a*}

^a State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
^b Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
* To whom correspondence should be addressed. E-mail: txliu@fudan.edu.cn; Tel: +86-21-55664197; Fax: +86-21-65640293.

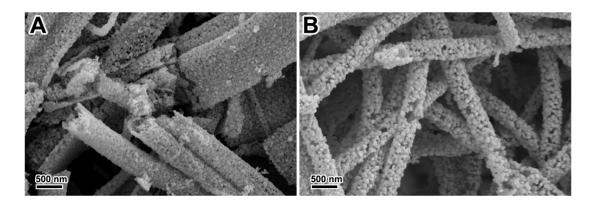


Fig. S1 FESEM images of SnO_2 nanotubes synthesized from $SnCl_2/PVP$ precursors with $SnCl_2/PVP$ mass ratios of 0.3/1.2 g/g (A) and 0.7/1.2 g/g (B).

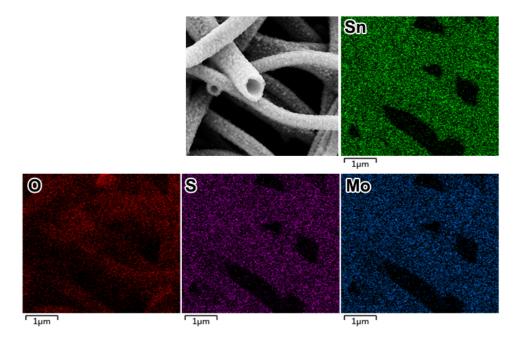


Fig. S2 EDX mapping of MoS_2/SnO_2 -6 hybrid nanotubes.

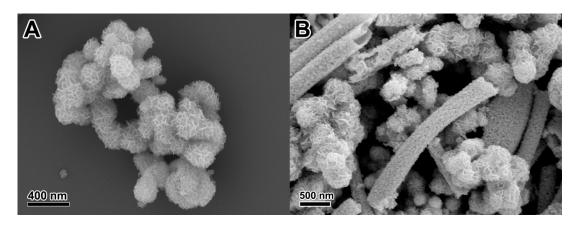


Fig. S3 FESEM images of (A) pure MoS_2 nanospheres without SnO_2 nanotubes as growing template and (B) mixture of MoS_2 nanosphere and SnO_2 nanotubes when the solvent of DMF was replaced by H_2O . Both products were prepared under the same conditions as that of MoS_2/SnO_2 hybrid.