Electronic Supporting Information

Fast Synthesis of High-Quality Reduced Graphene Oxide at Room

Temperature under Light Exposure

Surajit Some¹, Sungjin Kim¹, Khokan Samanta¹, Youngmin Kim¹, Yeoheung Yoon^{1,2},

Younghun Park¹, Sae Mi Lee¹, Keunsik Lee¹, and Hyoyoung Lee^{1,2,3}*

¹National Creative Research Initiative, Center for Smart Molecular Memory, Department of

Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-Gu, Suwon, Gyeonggi-Do 440-

746, Republic of Korea

²Department of Energy Science, Sungkyunkwan University, 2066 Seoburo, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, Republic of Korea

³SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seoburo, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, Republic of Korea

E-mail: hyoyoung@skku.edu (H. Lee)

Figure S1. Possible reduction mechanism and procedure for preparing the rGO_{Na-B1} sheets with solvated radical anion with electron from sodium.^{1,2,3}

$$Na + N_2H_4 \longrightarrow 2NaN_2H_3 + H_2 \qquad (2)$$

Figure S2. Possible reduction mechanism and procedure for preparing the rGO_{Na-H3} and rGO_{Na-H4} sheets with sodium hydrazide complex, NaN_2H_3 .^{4,5,6}

As per our hypothesis, in case of formation of the $rGO_{Na-B-H2}$ sheets by the use of Na-B-H reducing system, both mechanisms were employed.

Figure S3. XPS spectra of graphite.

Figure S4. C1s spectra of rGO_{Na-H3} (a) and rGO_{Na-H4} (b) sheets.

The C1S of rGO_{Na-H3} contained the peaks at 286.1 eV (C-O and C-N combined), 287.7 eV (C=O), 289.2 (C(O)OH)); whereas C1S of rGO_{Na-H4} contain the peaks at 286.2 eV (C-O and C-N combined), 288 eV (C=O), 289.7 (C(O)OH).

Figure S5. N1s spectra of $rGO_{Na-B-H2}$ (a), rGO_{Na-H3} (b), rGO_{Na-H4} (c) and rGO_{H} (d) sheets.

In the N1s peaks in the XPS spectra; peak was found about \sim 398 eV, which could be attributed to pyridinic N, the peak \sim 400 eV were attributed to amide, amine, or pyrrolic N, and the peak at \sim 402 eV is commonly attributed to oxidized nitrogen.⁶

Entry	Reduction Process	Temperature	C/O	N (%)	N1s (eV)
1.	GO	-	2.01	0.32	-
2.	Sodium- Benzophenone / UV light	rt	13.9	0.38	-
3.	Sodium- Benzophenone- Hydrazine / UV light	rt	16.2	3.8	400.2
4.	Sodium-Hydrazine dil	~50 °C	10.9	2.9	400.05
5.	Sodium-Hydrazine Conc	~50 °C	12.6	4.1	400.02
6.	Hydrazine	100 °C	12.1	3.4	398.3, 399.9, 402.2
7.	Graphite	-	71.8	0.1	-

Table S1. Comparison of XPS analysis results of as made rGOs.

Figure S6. XRD spectra of rGO_{Na-H3} and rGO_{Na-H4} sheets.

Figure S7. XRD spectra of only GO and GO solution treated with UV lamp for 24 h.

Figure S8. FTIR spectra of rGO_{Na-H3} and rGO_{Na-H4} sheets.

Figure S9. Raman spectra of rGO_{Na-H3} and rGO_{Na-H4} sheets.

Figure S10. TGA thermograms for GO, $rGO_{\text{Na-H3}}$ and $rGO_{\text{Na-H4}}$ sheets.

Figure S11. (a) AFM image of as-prepared rGO_{Na-B1} sheet using Na-B system. (b) AFM image of as-prepared $rGO_{Na-B-H2}$ sheet using Na-B-H system.

Figure S12. SEM images of (a) rGO_{Na-H3}, (b) rGO_{Na-H4} sheets and (c) graphite.

Figure S13. Photograph of GO and rGO film on PET.

Table S2. Comparison of sheet resistance of as made rGOs.

Entry	Туре	Sheet resistance Ω /square	Thickness of film or pellets (µm)
1.	rGO _{Na-B1}	~200 ~9	~4.2 (film) ~11.1 (pellet)
2.	rGO _{Na-B-H2}	~130 ~5	~4.1 (film) ~10.8 (pellet)
3.	rGO _{Na-H3}	~20	~11.5 (pellet)
4.	rGO _{Na-H4}	~18	~10.2 (pellet)
5.	rGO _H	~32	~12 (pellet)

Table S3. Comparison of sheet resistance and C/O ratio of other methods.

Reference	Sheet resistanc e Ω/square	C/O	Method	
Nature Commun. 2010 , 1, 73	~19.6 (~6.5 µm)	11.46	HI-AcOH, 40 °C, 40 h	
Nature Commun. 2013 , 4, 1539	~350 (Transpare ncy 80%)	16.61	Na-NH ₃ solution at -78 $^{\circ}$ C	

Nature Nanotech. 2008 , 3, 270	~43000 (Transpare ncy 63%)	-	GO film reduced with hydrazine vapor and annealed at 200 °C
Nature 2009 , 457, 706	~280 (Transpare ncy 80%)	-	CVD graphene film
Our result	~130 (~4.2 µm) ~5 (~10.8 µm)	16.2	GO film <i>in situ</i> reduction with sodium-benzophenone- hydrazine at room temperature

References

- 1 D. B. G. Williams, M. Lawton, J. Org. Chem. 2010, 75, 8351-8354.
- 2 C. G. Screttas, G. L Ioannou, D. G. Georgiou, Russ. Chem. Bull. 1995, 44, 78-86.
- 3 H. Feng, R. Cheng, X. Zhao, X. Duan, J. Li, Nat. Commun. 2013, 4, 1539-1546.
- 4 P. Patnaik, Handbook of inorganic chemicals. 2002, ISBN 0-07-049439-8.
- 5 R. Wang, Y. Wang, C. Xu, J.Sun, L. Gao, *RSC Adv.* 2013, **3**, 1194-1200.
- 6 Donghui. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S. Yoon, *Langmuir* 2010, 26, 16096-16102.