Supplementary Information

High-rate amorphous SnO₂ nanomembrane anodes for Li-ion batteries with long cycling life

Xianghong Liu, * ^a Jun Zhang, ^d Wenping Si, ^{a, b} Lixia Xi, ^e Steffen Oswald, ^e Chenglin Yan, * ^{a, c} and Oliver G. Schmidt ^{a, b}

^{*a*}Institute for Integrative Nanosciences, IFW-Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany. <u>Email: xianghong.liu@ifw-dresden.de (X. Liu)</u>. Fax: +49 351 4659 782.

^bMaterial Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainerstrasse 70, 09107 Chemnitz, Germany.

^cSchool of Energy, Soochow University, 215006 Suzhou, Jiangsu, China. Email: <u>c.yan@suda.edu.cn</u> (C. Yan)

^dSchool of Materials Science and Engineering, University of Jinan, Jinan 250022, China.

^{*e*}Institute for Complex Materials, IFW-Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany.

Fig. S1 XRD pattern of the as-prepared SnO₂ rolled-up nanomembranes.

SnO ₂ -based Anodes	Current density/Capacity/Cycle life	Maximum rate	Voltage window	Ref.
ultra-small SnO ₂ nanocrystals	392 mA g ⁻¹ /910 mAh g ⁻¹ /100 cycles	8C (6.27 A g ⁻¹)	0.01–2.0 V	1
SnO ₂ nanowires	100 mA g ⁻¹ /~300 mAh g ⁻¹ /50 cycles		0.05–1.5 V	2
Sn/SnO ₂ nanowires	100 mA g ⁻¹ /814 mAh g ⁻¹ /100 cycles		0-2.2V	3
SnO ₂ nanorods on graphene	200 mA $g^{-1}/576$ mAh $g^{-1}/50$ cycles		0.005–3 V	4
SnO ₂ nanotubes	$100 \text{ mA g}^{-1}/468 \text{ mAh g}^{-1}/30 \text{ cycles}$		0.005–1.5 V	5
SnO ₂ nanosheets	78.2 mA g ⁻¹ /559 mAh g ⁻¹ /20 cycles		0.005–3 V	6
SnO ₂ nanoboxes	0.2C/570 mAh g ⁻¹ /40 cycles		0.01–2.0 V	7
double-shelled SnO ₂ yolk–shell nanospheres	$625 \text{ mA g}^{-1}/642 \text{ mAh g}^{-1}/40 \text{ cycles}$		0.005–1 V	8
SnO ₂ hollow spheres	160 mA g ⁻¹ /~700 mAh g ⁻¹ /20cycles		0.01–2.0 V	9
porous SnO ₂ nanotubes	180 mA g ⁻¹ /807mAh g ⁻¹ /50 cycles (0–2 V)	1.88 A g ⁻¹ (0-2V) 7.82 A g ⁻¹ (0-3V)		10
ultra-small SnO ₂ particles in micro/mesoporous carbon	1.4 A g ⁻¹ /443 mA h g ⁻¹ /2000 cycles	10C (14 A g ⁻¹)	0.01–1.5 V	11
3 nm SnO ₂ nanoparticles/graphene	2 A g ⁻¹ /1813 mA h g ⁻¹ /1000 cycles	10 A g ⁻¹	0.005–3 V	12
ultrasmall SnO ₂ nanoparticles in carbon	800 mA $g^{-1}/712.8$ mAh $g^{-1}/378$ cycles	3 A g ⁻¹	0.01–3.0 V	13
sandwiched graphene/SnO ₂ nanorods/carbon	1000 mA g ⁻¹ / \sim 800 mAh g ⁻¹ /350 cycles	3 A g ⁻¹	0.01–3 V	14
SnO ₂ nanomembranes	1.6 A g ⁻¹ /854 mAh g ⁻¹ /1000 cycles	40 A g ⁻¹	0.01–3 V	Current work

Table S1 Electrochemical performance comparison of various SnO₂-based anodes.

References

- 1. L. Ding, S. He, S. Miao, M. R. Jorgensen, S. Leubner, C. Yan, S. G. Hickey, A. Eychmüller, J. Xu and O. G. Schmidt, *Sci. Rep.*, 2014, 4, 4647.
- 2. M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou and H. K. Liu, Angew. Chem., Int. Ed., 2007, 46, 750-753.
- 3. P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera and M. K. Sunkara, Nano Lett., 2009, 9, 612-616.
- 4. C. Xu, J. Sun and L. Gao, J. Mater. Chem., 2012, 22, 975-979.
- 5. J. Ye, H. Zhang, R. Yang, X. Li and L. Qi, Small, 2010, 6, 296-306.
- 6. C. Wang, Y. Zhou, M. Y. Ge, X. B. Xu, Z. L. Zhang and J. Z. Jiang, J. Am. Chem. Soc., 2010, 132, 46-47.
- 7. Z. Y. Wang, D. Y. Luan, F. Y. C. Boey and X. W. Lou, J. Am. Chem. Soc., 2011, 133, 4738-4741.
- 8. Y. J. Hong, M. Y. Son and Y. C. Kang, Adv. Mater., 2013, 25, 2279-2283.
- 9. S. Ding, J. S. Chen, G. Qi, X. Duan, Z. Wang, E. P. Giannelis, L. A. Archer and X. W. Lou, *J. Am. Chem. Soc.*, 2010, **133**, 21-23.
- 10. L. Li, X. Yin, S. Liu, Y. Wang, L. Chen and T. Wang, *Electrochem. Commun.*, 2010, 12, 1383-1386.
- 11. A. Jahel, C. M. Ghimbeu, L. Monconduit and C. Vix-Guterl, *Adv. Energy Mater.*, 2014, **4**, DOI: 10.1002/aenm.201400025.
- 12. Y. Chen, B. Song, R. M. Chen, L. Lu and J. Xue, J. Mater. Chem. A, 2014, 2, 5688-5695.
- 13. Q. Tian, Y. Tian, Z. Zhang, L. Yang and S.-i. Hirano, J. Power Sources, 2014, 269, 479-485.
- 14. D. Wang, J. Yang, X. Li, D. Geng, R. Li, M. Cai, T.-K. Sham and X. Sun, *Energy. Environ. Sci.*, 2013, **6**, 2900-2906.