Supporting Information

Topological Insulators based on 2D Shape-persistent Organic Ligand Complexes

Qionghua Zhou¹, Jinlan Wang^{1*}, Tsz Sian Chwee², Wu Gang², Xiaobai Wang³, Qun Ye³, Jianwei Xu^{3,4}, Shuo-Wang Yang^{2†}

Corresponding: jlwang@seu.edu.cn and yangsw@ihpc.a-star.edu.sg

¹Department of Physics, Southeast University, Nanjing 211189, P. R. China

² Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore

³ Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 11760, Republic of Singapore

⁴ Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore

Complex	ΔE = E _{cis} – E _{trans} (eV/unit cell)	
Pd-(NH ₂)S	1.28	
Pt-(NH ₂)S	1.44	
Pd-(NH ₂)O	2.50	
Pt-(NH ₂)O	2.40	
Pd-(NH)S	0.03	
Pt-(NH)S	0.19	

Table S1 The energy differences between *cis*- and *trans*-structures.

Complex	a /Å	d/Å
trans-Pd-(NH ₂)S	23.15	2.073
trans-Pt-(NH ₂)S	23.14	2.063
trans-Pd-(NH ₂)O	22.35	2.062
trans-Pt-(NH ₂)O	22.37	2.051
trans-Pd-(NH)S	22.94	1.977
trans-Pt-(NH)S	22.95	1.968
trans-Pd-(NH)O	22.24	1.969
trans-Pt-(NH)O	22.27	1.954

 Table S2 The lattice constant (a) and Pd/Pt-N distance (d) in each trans-complex.

Fig. S1 (a) - (c) The occupancies of *p*-orbital components from S (yellow), C (grey) and the sum of them (pink) in three topmost kagome bands in 2D *trans*-Pd-(NH₂)S complex.

Fig. S2 (a) - (c) The occupancies of *p*-orbital components from S, C atoms and the sum of them in three topmost kagome bands in 2D *trans*-Pt-(NH₂)S complex.

Fig. S3 DFT calculated band structures of *trans*-Pd-(NH_2)O (a) without and (b) with SOC consideration as well as *d*-orbital occupancies; (c) comparison between DFT and TB calculated band structures; (d) edge states for both up and down spins.

Fig. S4 DFT calculated band structures of *trans*-Pt-(NH_2)O (a) without and (b) with SOC consideration as well as *d*-orbital occupancies; (c) comparison between DFT and TB calculated band structures; (d) edge states for both up and down spins.

Fig. S5 (a) Comparison between DFT and TB calculated band structures with SOC considerations for *trans*-Pd-(NH)S; and (b) edge states for both up and down spins. The calculated Z_2 invariants are equal to 1 in both gaps. (c) and (d) are for *trans*-Pt-(NH)S.

Fig. S6 (a) & (b) DFT calculated band structures of *trans*-Pd-(NH)O without and with SOC considerations; (c) comparison between DFT and TB calculated band structures; and (d) edge states for both spins. Z_2 invariants are calculated to 1 in both gaps.

Fig. S7 (a) & (b) DFT calculated band structures of *trans*-Pt-(NH)O without and with SOC considerations; (c) comparison between DFT and TB calculated band structures; and (d) edge states for both spins. Z_2 invariants are calculated to be 1 in both gaps.

Fig. S8 *p*-orbital occupancies from S/O, C, N atoms and sum of them for *trans*-Pt-(NH)S (a, c, e, g) and for *trans*-Pt-(NH)O (b, d, f, h).

Fig. S9 *p*-orbital occupancies from S/O, C, N atoms and sum of them for *trans*-Pd-(NH)S (a, c, e, g) and *trans*-Pd-(NH)O (b, d, f, h) respectively.

Fig. S10 Charge density difference of *trans*-structures: (a) Pt-(NH₂)S; (b) Pt-(NH₂)O; (c) Pt-(NH)S; and (d) Pt-(NH)O respectively. The unit of the scale is $e/Å^3$.

Fig. S11 DFT calculated band structures based on Jellium Model electron-doped (two electrons per unit cell) for *trans*-Pt-(NH)S complex with SOC consideration.