Electronic Supplementary Information (ESI)

Facile Preparation of Ordered Mesoporous MnCo₂O₄ for Low-temperature Selective Catalytic Reduction of NO with NH₃

Mingying Qiu^a, Sihui Zhan*^a, Hongbing Yu*^a, Dandan Zhu^a and Shengqiang Wang^a

^a College of Environmental Science and Engineering, Nankai University, Tianjin300071, P. R. China; Fax: 022-23502756; Tel: 022-23502756; E-mail: sihuizhan@gmail.com

Fig. S1 (A) Low-angle XRD patterns of SBA-15(a) and KIT-6(b).

(B) Nitrogen physisorption isotherms of SBA-15 and KIT-6 (Inset: pore size distribution calculated from desorption branch by BJH method) Fig. S1 (A) presented the small-angle XRD patterns of KIT-6 and SBA-15. The low-angle XRD reflections confirmed the p6mm and Ia3d cubic symmetries of the pore system and the N₂-physisorption isotherms in Fig. S1 (B) showed the typical type IV isotherms with an H1-type hysteresis loop, indicating the presence of ordered mesopores. The structural parameters were summarized in Table S1.

Table S1. Structural parameters of the template obtained from nitrogen

phy	vsisor	ption	at	-196.	.8	°C
	,	PUICII	~~~	1/0.	. 0	-

sample	$S_{BET}{}^{[a]}[m^2g^{\text{-}1}]$	D _p ^[b] [nm]	$V_p^{[c]}[cm^3g^{-1}]$
SBA-15	603	5.1	0.63
KIT-6	730	6.9	0.52

Fig. S2. NO conversion in separate NO oxidation reaction over 3D- $MnCo_2O_4$, 2D- $MnCo_2O_4$ and B- $MnCo_2O_4$ at GHSV of 32, 000 h⁻¹.

For low temperature NH₃-SCR, NO oxidation to NO₂ is very important to promote deNOx efficiency by accelerating the "fast SCR" process. Separate NO oxidation experiments were carried out and shown in Fig. S4, the B-MnCo₂O₄ sample showed low NO oxidation activity over the whole temperature range, while the relatively higher NO conversion to NO₂ could be achieved over the 2D-MnCo₂O₄ sample. Over the 3D-MnCo₂O₄ catalyst, much higher NO conversion to NO₂ could be obtained than with 2D-MnCo₂O₄ over the whole temperature range (e.g. 31% vs. 20% at 200 °C), which is consistent with the SCR performance. These results clearly indicate that the enhancement of low temperature SCR activity of 3D-MnCo₂O₄ catalyst is strongly associated with facilitation of a "fast SCR" process.

Fig. S3. NH_3 conversion in separate NH_3 oxidation reaction (A) and N_2O concentration (B) over 3D-MnCo₂O₄, 2D-MnCo₂O₄ and B-MnCo₂O₄ at GHSV of 32, 000 h⁻¹.