Supporting Information

Metallic MoO₂ Cocatalyst Significantly Enhanced Visible-Light Photocatalytic Hydrogen Production over MoO₂/Zn_{0.5}Cd_{0.5}S Heterojunction

Hong Du,^{a,b} Xiao Xie,^a Qing Zhu,^a Ling Lin,^a Yi-Fan Jiang,^a Zheng-Kun Yang,^a

Xiao Zhou,^a and An-Wu Xu^{a,*}

^a Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Deparment of Chemistry, University of Science and Technology of China, Hefei 230026, China

^b College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China

* Address correspondence to <u>anwuxu@ustc.edu.cn</u> (A.W. X.)

Fig. S1 TEM image of MoO₂ nanoparticles.

Fig. S2 The UV–vis diffuse reflectance spectra for MoO_2 (2.0 wt %)/Zn_{0.5}Cd_{0.5}S prepared at different temperatures.

Fig. S3 XPS spectra of samples before (black line) and after loading of MoO₂ (red line) : (a) Zn 2p3/2 XPS spectrum, (b) Cd 3d XPS spectrum, (c) S 2p XPS spectrum.

cified temperatures			
Treating Temp (K)	573	673	773
Surface Area (m ² /g)	25	21	12

Pore Volume (cm^3/g)

0.196

0.178

0.102

Table S1 BET surface areas and pore volumes of the samples calcined at the S

Table S1 shows that the BET surface area and pore volume of the
MoO ₂ /Zn _{0.5} Cd _{0.5} S sample calcined at 773 K are different from those of the sample
calcined at 673 and 573 K. The BET surface areas and pore volumes decrease
significantly with increasing calcination temperature. It is noted that H ₂ evolution rate
of MoO ₂ (2 wt%)/Zn _{0.5} Cd _{0.5} S hybrid photocatalyst calcined at 573 K (130.3 μ mol h ⁻¹)
is lower than that calcined at 673 K (252.4 μ mol h ⁻¹) under visible light irradiation
(see Fig. 6). This can be explained that the hybrid photocatalyst calcined at 673 K

contain more heterojunction between the MoO_2 and $Zn_{0.5}Cd_{0.5}S$, for efficient charge carrier transfer and separation, high crystallinity for decreasing photogenerated e/h recombination. Further increase of the annealing temperature to 773 K reduced the rate of H₂ evolution to 184.4 µmol h⁻¹ for $MoO_2/Zn_{0.5}Cd_{0.5}S$ catalyst, which could be ascribed to the drastic decrease of the surface area and pore volume.

Fig. S4 Time courses of photocatalytic H₂ evolution from water solution on MoO₂ (2 wt%)/Zn_{0.5}Cd_{0.5}S hybrid photocatalyst (a) and Pt (0.5 wt%)/Zn_{0.5}Cd_{0.5}S (b) under visible light irradiation. Reaction conditions: catalyst, 0.1 g; 100 ml aqueous solution containing 0.1 M Na₂S and 0.1 M Na₂SO₃, and light source, 300 W xenon lamp ($\lambda \ge$ 420 nm).

Fig. S5 Mo 3d XPS spectra of MoO₂ (2 wt%)/Zn_{0.5}Cd_{0.5}S before (a) and after (b) photocatalytic reactions.

Samples	Mo ⁴⁺ area ratio (%)	Mo ⁶⁺ area ratio (%)
MoO ₂ /Zn _{0.5} Cd _{0.5} S (unused)	93.9%	6.1%
MoO ₂ /Zn _{0.5} Cd _{0.5} S (used)	91.7%	8.3%

Table S2 XPS area ratios of chemical states of Mo species for MoO_2 (2 wt%)/ $Zn_{0.5}Cd_{0.5}S$ before and after photocatalytic reactions.

Fig. S6 Powder X-ray diffraction pattern for MoO_2 (2 wt%)/Zn_{0.5}Cd_{0.5}S hybrid after serving as catalysts for a 20 h H₂ evolution.