Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supporting information

To investigate the effect of the probe ssDNA concentration on the immobilization signal, the probe molecules were immobilized from solutions of 0.5 μ M, 2.5 μ M, 5 μ M, 7.5 μ M and 10 μ M ssDNA. With increasing ssDNA concentration from 0.5 μ M to 5 μ M, the immobilization signal increases from 55 mV to 80 mV. Further increase of the ssDNA concentration results in a less stable immobilization signal. As a consequence, in further experiments, probe molecules were immobilized from a 5 μ M ssDNA solution.

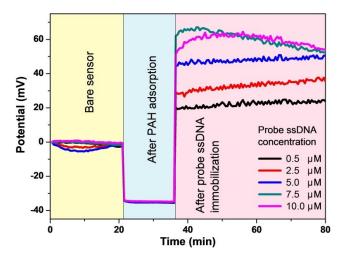


Figure S1. Potential shifts of the MLAPS after consecutive LbL adsorption of PAH and probe ssDNA molecules. The PAH layer was prepared from 10 μ M PAH solution. The probe ssDNA molecules were immobilized from solutions with different ssDNA concentrations of 0.5 μ M, 2.5 μ M, 5.0 μ M, 7.5 μ M and 10 μ M. The measured data were averaged over 16 measurement spots.