
        Supporting Informations for
Predictive of the Quantum Capacitance Effect on the Excitation 

of Plasma Waves in Graphene Transistors with Scaling Limit 
Lin Wang*, Xiaoshuang Chen*, Yibin Hu, Shaowei Wang and Wei Lu
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, 
Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, Shanghai 200083, China
Synergetic Innovation Center of Quantum Information & Quantum Physics, 
University of Science and Technology of China, Hefei, Anhui 230026, China
*Address correspondence to wanglin@mail.sitp.ac.cn; xschen@mail.sitp.ac.cn

S1. The optical conductivity of graphene based on the Kubo theorem
To describe the transport properties of graphene under alternative electromagnetic field in our 

study, we calculate the local conductivity of graphene from Kubo formula1,2. The conductivity 
calculated consists of two parts, the intraband intra and interband part inter
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where  F()={1+exp[(－EF)/kBT]}-1 is the Fermi-Dirac distribution with EF as the Fermi-level, 
kB and T are the Boltzman constant and temperature, respectively. The first term corresponds to 
contributions from intraband electron-phonon scattering, and the second term arises from 
contribution due to direct interband electron transitions. The difference of the Fermi functions in 
the second integrand reads 
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Integration of the first term leads to 
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For the interband term, we obtain 

                          (4)2 20

( ) ( / 2)( / 2)
( ) 4

2
inter e 2

4
G GG d

i
    
  

 
    


h h

h
h h

It should be noted that the frequency of plasma resonance is mainly determined by the imaginary 
part of conductivity, while the real part of the conductivity causes the energy loss and broadening 
of plasma resonance. With the help of Eq. 4 and for EF >>kBT, we the intra- and inter-band 
conductivity reads:
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Considering the graphene monolayer is surrounded with dielectrics of constants  (top) and 2 
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(bottom), for definiteness,  qas a function of plasma wavevector q is assumed considering 
the situation when the gates are added on top of the graphene (seeing Fig. 2a). Electric potential is 
found from Poisson-equation if the gate contact is separated from the graphene with dielectric 
layer  thickness d, the boundary conditions is a zero potential at contact and continuity condition 
of electric flux density at graphene interface. The Poisson equation can be solved in the Fourier 
form, which results in following relations
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In our investigated regime, qd<<1, Eq. (6) takes form as follows
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Fig. S1 (left) Plasma wave in pristine graphene sheet, (right) plasma oscillation in the cavity 
formed by the gate and channel.

  Now, we consider the geometry and the longitudinal plasma wave in Fig. S1. The electric field 

takes form , where , after 1,21
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where 12and 21coth(qd)for the graphene with and without gate, and the 
plasma frequency is determined by the imaginary part of the intra-conductivity. From Eqs.1-5 it is 
straightforward to obtain plasma dispersion relation:
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Since coth(qd)~1/qd, when qd<<1, the plasma frequency has a linear relation with wavevector q.
  

S2. Random Phase Approximation



The frequency dependence of dynamical dielectric function for two-dimensional electron 
system is given by (q, )/=1－e2/2q(q, )3, 4, where  is the effective dielectric constant 
determined by geometry of the structure. is polarizability function, which is given by the bubble 
diagram
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in which fs k=[exp{(s k-)}+1]-1 is the Fermi distribution function,  is thermal energy, is 
chemical potential, g is degeneracy factor (g is 4), and Fss’ is the wave-function overlap integral 
(Fss’=[1+ss’cos(2)]/2), with  being the angle between k and k+q. By looking for the zeros of 
dynamical polarizability in the long-wavelength limit (q→0), the polarizability approximately 

follows , and thus results in the plasma wave dispersion 
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(q)~(ge2EF/8ħ2), is relevant with the surrounding dielectrics, and in consistent with above 
discussions in Eq. 8. 

S3. Plasma analysis based on quasi-classical Boltzman theory 
 The starting point of Boltzman transport theory is to search for the distribution function due to 
the inter-carrier collisions and the disorder. Recent optical-pump THz-probe experiment has 
confirmed the fast relaxation of photo-excited electron-hole pairs in a few tens of fs, which is 
much shorter than the frequency of plasma wave ranging from THz to mid-infrared wavelength. It 
is well known that the Fermi-distribution of electron and hole turns the collision integral into zero, 
and thus it is ensured to allow the quasi-equilibrium treatment of Dirac fermions system. For the 
sake of completeness, in this Supporting Information, we summarize the hydrodynamic treatment 
for graphene, starting from quasi-classical Boltzman transport equation:
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Here, F is the distribution function of graphene representing the probability to find an electron 
with momentum p. As known, the Fermi distribution function turns the right term of Eq.10 into 
zero. On integrating the Bolzman kinetic equation over phase space, the continuity equation and 
Euler equation can be obtained:
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Where p is a hydrodynamic momentum, n is the electron density, U is the potential along the 
channel, v is the electron velocity,  is the momentum relaxation time. In the 2D massless Dirac 
fermion case, one finds p=3Pv/nvF

2, vF is the Fermi velocity, and the term P is the hydrodynamic 
pressure given by
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area. The fictitious mass of Dirac fermions is given by Me~3<p>/2vF, when EF >>kBT, Me is 
reduced to cyclotron mass~EF/vF

2. To derive the spectra of plasma waves, one can apply small 
signal analysis to the first order (i. e. E=E0+E1eiqx-it, v=v0+v1eiqx-it, and n=n0+n1eiqx-it). In the 
graphene FET with gate dielectric layer, the carrier density is related to the gate potential as in Eq. 
1~n=CTGVTG. And, with U(q)=E/iq and n~CTGE/iq, from the linearized Euler equation and 
continuity equation to the first order, the following relationship can be obtained
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where <p>~ 2nMevF/3, and <p-1> ~D0vF and D0 is the density of state. Thus the plasma wave 
frequency is obtained as follows 
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 To estimate the magnitude of re (seeing the text), it is known that D0 is in the order of 
1017m2/eV, CTG is in the order of 10-6F/cm2, and thus re is much larger than 1. For the density of 
state in the perfect graphene sheet (D0=2EF/ħ2), the frequency of plasma wave is given by 

, in well consistent with Eq. 8 in the above section when considering the screening 
2
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effect of gate and the effective dielectric constant  of Eq. 8 is reduced to , 
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with coth(qd)~1/qd when qd<<1. Therefore, the RPA approximation, Kubo theory and Boltzman 
transport methods can lead to the similar results in the long-wavelength limit.
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