Absolute stereochemistry of dihydrofuroangelicines bearing C-8 substituted double bonds: a combined chemical/exciton chirality protocol

Katsunori Tanaka, Gennaro Pescitelli, Lorenzo Di Bari, Tom L. Xiao, Koji Nakanishi, Daniel W. Armstrong, and Nina Berova

Electronic Supplementary Information

Relative energies and relevant geometrical parameters of DFT-otpmized structures of **sty-2** and **sty-5** (Table ESI1). Calculated and experimental ${}^{3}J_{Me8,H9a}$ and ${}^{3}J_{Me8,H9b}$ values (in Hz) for **sty-2** and **sty-5** (Table ESI2). UV absorption spectrum of 7-hydroxy-4-methylcoumarin in CH₃CN (Figure ESI1). Description of the procedure for estimating transition dipole moment positions from excited-states calculations.

sty-2					sty-5				
Conformer	<i>d</i> _{8,9}	$d_{8,10}$	E (kcal/mol)	Pop ^(a) %	Conformer	$d_{8,9}$	$d_{8,10}$	E (kcal/mol)	Pop ^(a) %
ax_0	+17	-1	0	36	eq_0	-11	-5	0	37
eq_0	-11	0	0.13	29	ax_0	+13	-5	0.01	37
ax_1	+17	+120	0.32	21	eq_1	-12	+118	0.78	10
ax_2	+3	-147	1.14	5	eq_2	-15	-152	1.00	7
eq_1	-11	+121	1.33	4	ax_2	+6	-153	1.09	6
eq_2	-13	-142	1.31	4	ax_1	+5	+148	1.47	3

Table ESI1.

Relative energies and relevant dihedral angles (in deg; see Figure 4) of $DFT^{(b)}$ optimized structures of (*S*)sty-2 and (*S*)-sty-5.

^(a) Relative Boltzmann population at 300K.

^(b) B3LYP/6-31G** level, in CHCl₃ (GB/SA solvation model).

		sty	/-2	sty	sty-5		
		${}^{3}J_{\mathrm{Me8,H9a}}$	$^{3}J_{\rm Me8,H9b}$	${}^{3}J_{\mathrm{Me8,H9a}}$	$^{3}J_{\mathrm{Me8,H9b}}$		
	Overall ^(b)	6.2	3.3	6.3	4.2		
Calculated ^(a)	$eq_0^{(c)}$	6.3	5.4	6.2	5.4		
	$ax_0^{(c)}$	6.2	1.5	6.6	2.3		
Experim	nental	6.1	4.8	6.7	5.8		

Table ESI2.

Calculated and experimental ${}^{3}J_{Me8,H9a}$ and ${}^{3}J_{Me8,H9b}$ values (in Hz) for sty-2 and sty-5.

^(a) Using the Karplus equation ${}^{3}J_{C,H} = 3.6 \cos 2\varphi - \cos \varphi + 4.3$, where φ is $\varphi_{Me8-C8-C9-H9a}$ or $\varphi_{Me8-C8-C9-H9b}$ dihedral angle measured for the DFT-computed structures.

^(b) Boltzmann-weighted average values at 300K for all the six DFT-computed minima (see Table ESI1).

^(c) Values calculated for the two lowest energy conformers ax_0 and eq_0 (see Table ESI1).

Figure ESI1.

UV absorption spectrum of 7-hydroxy-4-methylcoumarin 4.58·10⁻⁵ M in acetonitrile.

Procedure for the calculation of transition dipole moment position.

In the point-dipole approximation for a transition dipole moment allied to a one-electron $i \rightarrow j$ transition, its position may be calculated as the center-of-mass of atom-centered transition monopoles $\rho_{\nu}^{i \rightarrow j}$ (in the dipole length formulation, DL) or of the bond-centered transitional bond-order vectors $p_{\nu,\mu}^{i \rightarrow j}$ (in the dipole velocity formulation, DV).¹ The above quantities are defined as follows:

$$\begin{split} \rho_{\nu}^{i \rightarrow j} &= C_{\nu}^{i} C_{\nu}^{j} \\ p_{\nu,\mu}^{i \rightarrow j} &= \left(C_{\mu}^{i} C_{\nu}^{j} - C_{\nu}^{i} C_{\mu}^{j} \right) \langle \nabla_{\mu-\nu} \rangle \end{split}$$

where C_{ν}^{i} is the amplitude coefficient of the atomic orbital (AO) ν in the molecular orbital (MO) *i*, and $\langle \nabla_{\mu-\nu} \rangle$ the average expectation values of the dipole-velocity element, tabulated for different bond-types with various lengths.₂

In the case of ZINDO computed MOs for a π - π * transition, C_{ν}^{i} represents the coefficient of a $2p_{\pi}$ AO (on carbon or oxygen atoms for 7-hydroxycoumarin, and on carbon atoms only for styrene). In the case of TDDFT computed MOs, it may be defined

$$C_{\nu}^{i} C_{\mu}^{j} = \sum_{\lambda} c_{\nu}^{i(\lambda)} c_{\mu}^{j(\lambda)}$$

where $c_{\nu}^{i(\lambda)}$ is the coefficient of the AO λ centered on ν in the MO *i*.

¹ S. F. Mason, *Molecular Optical Activity and the Chiral Discrimination*, Cambridge University Press, Cambridge, 1982; p. 66-69.

² W. H. Inskeep, D. W. Miles, and H. Eyring, J. Am. Chem. Soc., 1970, **92**, 3866-3872.