Extremely large cavity assembled by self-interlocking of distorted biconcave porphyrins

Hidemitsu Uno, ${ }^{a}$ Hikaru Watanabe, ${ }^{b}$ Yuko Yamashita ${ }^{b}$ and Noboru Ono ${ }^{b}$
${ }^{a}$ Division of Synthesis and Analysis, Department of Molecular Science, Integrated Center for Sciences, Ehime University and CREST, Japan Science Technology Corporation (JST), Matsuyama 790-8577, Japan. Fax: +81-89-927-9670; Tel: +81-89-927-9660; E-mail: uno@dpc.ehime-u.ac.jp
${ }^{b}$ Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan. Fax: +81-89-927-9590; Tel: +81-89-927-9610; E-mail: ononbr@dpc.ehime-u.ac.jp

In all drawings of the X-ray structure, whole molecules are shown by symmetry expansion when the molecules occupy special positions. Therefore, the molecular ratios in the figures are not necessarily identical with the molecular compositions of the crystals. In the cases that the PLATON SQUEEZE program was applied, only the Ortep drawing obtained by these results are shown. The Ortep drawings are created by Ortep-3 program and the packing views are created by Mercury program. In the case of free base porphyrin 3, pyrrolic hydrogen atoms are placed at the all pyrrole moietires with a half occupancy. Bond lengths, angles, and torsion angles are shown in the separated CIF files. The crystallographic data for the individual crystals are summarised in Table S1. The Xray measurements were performed by Rigaku Raxis-IV (IP) or Rigaku AFC7R-Mercury CCD. The reflection data were created by CrystalClear and processed by CrystalStructure. The structures were refined by teXsan 1.11 or CrystalStructure 3.5.1-3.6.0, in which Shelx-97 programs were installed.
X-ray structure of $5,10,15,20-$ Tetraphenyl-
2,3;7,8;12,13;17,18-tetrakis(9,10-dihydro-9,10-
anthraceno)porphyrinato zinc (16)

The single crystals were obtained by slow evaporation of the solvent from a toluene solution. The crystal used for X-ray analysis contained 7 molecules of solvent toluene in the unit cell. As the solvent molecules were not properly modeled, the structure was obtained without the solvent molecules by several cycles of Shelxl-97 and PLATON SQUEEZE refinements

X-ray data for TPTAP-Zn-7PhMe	
Empirical Formula	$\mathrm{C}_{149} \mathrm{H}_{116} \mathrm{~N}_{4} \mathrm{Zn}$
Formula Weight	2027.96
Crystal Colour	red
Habit	block
Crystal Dimensions	$0.55 \times 0.20 \times 0.20 \mathrm{~mm}$
Crystal System	triclinic
Lattice Type	Primitive
No. of Reflections Used for UnitCell Determination	
(2 θ range)	11247 (6.0-55.0 ${ }^{\circ}$)
Lattice Parameters	$a=10.263(1) \AA$
	$b=16.066(2) \AA$
	$c=16.779(2)$
	$\alpha=82.544(5)^{\circ}$
	$\beta=85.022(6)^{\circ}$
	$\gamma=80.666(6)^{\circ}$
	$\mathrm{V}=2700.8(5) \AA^{3}$
Space Group	P-1 (\#2)
Z value	1
$\mathrm{D}_{\text {calc }}$	$1.247 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	1068.00
$\mu(\mathrm{MoK} \alpha)$	$2.86 \mathrm{~cm}^{-1}$
Diffractometer	MERCURY
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71070 \AA)$ graphite monochromated
Take-off Angle	$2.8{ }^{\circ}$
Detector Aperture	2.0-2.5 mm horizontal
Voltage, Current	$50 \mathrm{kV}, 100 \mathrm{~mA}$
Temperature	$-100.0{ }^{\circ} \mathrm{C}$
Scan Type	ω
$2 \theta_{\text {max }}$	55.0°

Figure S1. Ortep drawing of $\mathbf{1 6} \cdot 7 \mathrm{PhMe}$ (the refined structure is 16)

Figure S2. Ortep side views of TPTAP-Zn. The angles toward the porphyrin mean plane are as follows:

Tilting angle of pyrrole 1	$3.95(5)^{\circ}$
Tilting angle of pyrrole 2	$2.92(5)^{\circ}$
Benzene moiety A	$45.05(5)^{\circ}$
Benzene moiety B	$77.70(5)^{\circ}$
Benzene moiety C	$69.92(5)^{\circ}$
Benzene moiety B	$52.44(5)^{\circ}$
5-Phenyl	$82.35(5)^{\circ}$
10-Phenyl	$89.54(5)^{\circ}$

Figure S3. Ortep drawing of $\mathbf{1 2 . 9} 9 \mathrm{PhBr}$ (the refined structure is $\mathbf{1 2 . 4} \mathrm{PhBr}$)

Figure S4. Ortep drawing of $\mathbf{1 3} \cdot 10 \mathrm{PhCl}$ (the refined structure is 13)

Figure S5. Ortep drawing of $\mathbf{1 2} \cdot 12 \mathrm{PhH}$ (the refined structure is 12)

Figure S6. Ortep drawing of $\mathbf{1 2} \cdot 8 \mathrm{PhCl} \cdot 4 i-\mathrm{PrOH}$

Figure S7. Ortep drawing of $\mathbf{1 3} \cdot 12 \mathrm{PhH}$

Figure S8. Ortep drawing of $\mathbf{1 4} \cdot 12 \mathrm{PhH}$ (the refined structure is $\mathbf{1 4} \cdot \mathbf{4 \mathrm { PhH } \text {) }}$

Figure S9. Ortep drawing of $\mathbf{1 4} \cdot 8 \mathrm{PhCl} \cdot 4 i$ - PrOH (the refined structure is $\mathbf{1 4}$)

Figure S10. Ortep drawing of $\mathbf{1 2} \cdot 2 \mathrm{PhH} \cdot 7 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (the refined structure is $\mathbf{1 2} \cdot \mathrm{PhH}$)

Figure S11. Packing diagram of $\mathbf{1 2} \cdot 9 \mathrm{PhBr}$ (the refined structure is 12)

Figure S12. Packing diagram of $\mathbf{1 2} \cdot 12 \mathrm{PhH}$. Green: $\mathbf{1 2}$ and Red, Blue and Yellow: PhH.

Figure S13. Packing diagram of $\mathbf{1 2} \cdot 8 \mathrm{PhCl} \cdot 4 i$ - PrOH . Light blue: 12; Blue and Yellow: disordered PhCl ; and Purple: $i-\mathrm{PrOH}$ around -4 symmetric position.

Figure S14. Packing diagram of $\mathbf{1 3} \cdot 12 \mathrm{PhH}$. Green: $\mathbf{1 3}$ and Red, Blue and Yellow: PhH.

Figure S15. Packing diagram of $\mathbf{1 4} \cdot 12 \mathrm{PhH}$. Green: 14; Blue: PhH refined in the PLATON SQUEEZE and Shelxl97 refinement; and Purple and Yellow: disordered PhH.

