### **Electronic supplementary information**

# Thiacalix[4]arene derivatives as radium ionophores: a study on the requirements for <sup>226</sup>Ra<sup>2+</sup> extraction

Fijs W. B. van Leeuwen, Hans Beijleveld, Aldrik H. Velders, Jurriaan Huskens,

Willem Verboom, and David N. Reinhoudt

| Contents                                                                        |             | 1  |
|---------------------------------------------------------------------------------|-------------|----|
| 2D <sup>1</sup> H NMR spectra                                                   |             | 2  |
| - Compound <b>2</b>                                                             | (Figure S1) | 2  |
| - Compound <b>5</b>                                                             | (Figure S2) | 3  |
| - Compound 7                                                                    | (Figure S3) | 4  |
| - Complex [Ba(5)Pic]                                                            | (Figure S4) | 5  |
| Extraction equilibria and stoichiometries used to obtain extraction constants 5 |             |    |
| - Singly charged ionophores, 1: 1 stoichiometry (2 and                          | 5)          | 6  |
| Extraction curves M <sup>2+</sup> cations                                       | (Figure S5) | 7  |
| - Di- or trivalently charged ionophores, 1: 1 stoichiometry                     |             |    |
| - (3a,b, 4a,b, 6, and 7)                                                        |             | 9  |
| Extraction curves M <sup>2+</sup> cations                                       | (Figure S6) | 9  |
| Extraction curves <sup>226</sup> Ra <sup>2+</sup> cations                       | (Figure S7) | 10 |
| - Tetravalent charged ionophore, 1: 2 stoichiometry (8)                         |             | 11 |
| Extraction curves M <sup>2+</sup> cations                                       | (Figure S8) | 11 |
| Extraction curves <sup>226</sup> Ra <sup>2+</sup> cations                       | (Figure S9) | 14 |
| References                                                                      |             | 14 |

## 2D <sup>1</sup>H NMR Spectra



**Figure S1.** ROESY spectrum of the thiacalix[4]crown monocarboxylic acid (2) (cone) in CDCl<sub>3</sub> at 25 °C. The CHCl<sub>3</sub> peak is indicated with <sup>#</sup>.



**Figure S2.** NOESY spectrum of the thiacalix[4]crown monocarboxylic acid (7) (partial cone) in CDCl<sub>3</sub> at 25 °C. The CHCl<sub>3</sub> peak is indicated with <sup>#</sup>.



**Figure S3.** NOESY spectrum of the thiacalix[4]arene-crown tricarboxylic ethyl ester (16; cone) in CDCl<sub>3</sub> at 25 °C. The CHCl<sub>3</sub> peak is indicated with <sup>#</sup>.



**Figure S4.** NOESY spectrum of the thiacalix[4]crown monocarboxylic acids (5) (partial cone)  $Ba^{2+}$  complex in CDCl<sub>3</sub> at 25 °C. Indicated are the resonances of: the –OCH<sub>2</sub>CO<sub>2</sub>- group (•), the crown-ether bridge (°), the ArH groups (<sup>\*</sup>), the *t*-butyl groups (<sup>t</sup>), and CHCl<sub>3</sub> (<sup>#</sup>). The expected conformational change of **5** (Figure S2) after complexation of  $Ba^{2+}$  is depicted as molecular model (top Figure S4).

#### Extraction equilibria and stoichiometries used to obtain extraction constants

Comparison of the extraction constants of the competing cations ( $Ca^{2+}$ ,  $Sr^{2+}$ , and  $Ba^{2+}$ ) and of <sup>226</sup>Ra<sup>2+</sup>, allows the quantification of the differences between the various extractants used (**2**, **3a,b**, **4a,b**, **5**, **6**, **7**, and **8**). In order to obtain these extraction constant ratios, several equilibria have to be considered.

Since the pKa of tris is  $8.1^1$  and all the competition experiments were performed at pH 8.9 ([tris]<sub>tot</sub> =  $5.0 \times 10^{-2}$  M), [Htris<sup>+</sup>]<sub>aq</sub> =  $6.8 \times 10^{-3}$  M. Consequently, because of the basic nature of the aqueous phase, the uncomplexed ligands ([L]<sub>tot</sub> =  $10^{-4}$  M) in the organic phase are assumed to exist as neutral (Htris)L, (Htris)<sub>2</sub>L, (Htris)<sub>3</sub>L, or (Htris)<sub>4</sub>L salts, depending on the charge of the ligand.

#### Singly Charged Extractants, 1: 1 Stoichiometry (2 and 5)

Extraction of  $M^{2+}$  cations by the singly charged thiacalix[4]crown monocarboxylic acids (2 and 5) is shown in Figure S.5. The best fits were obtained assuming a 1:1 complex stoichiometry, and therefore the equilibrium for the extraction of the divalent cations can be written as equation 1, with equation 2 describing the corresponding extraction constant.

$$[M^{2^+}]_{aq} + [X^-]_{aq} + [HtrisL]_{org} \rightleftharpoons [MLX]_{org} + [Htris^+]_{aq}$$
(1)

$$K^{M}_{ex} = [MLX]_{org}[Htris^{+}]_{aq}/[M^{2+}]_{aq}[HtrisL]_{org}[X^{-}]_{aq}$$
(2)

Because of the equal volumes used, a decrease of  $[M^{2^+}]_{aq}$  in the aqueous phase leads to an equal increase of  $[MLX]_{org}$  in the organic phase, allowing for direct comparison of the concentrations of the two phases. This results in the equations 3 and 4 for the mass balances of  $M^{2^+}$  and L, respectively.

$$[M^{2^{+}}]_{tot} = [M^{2^{+}}]_{aq} + [MLX]_{org}$$
(3)

$$[L]_{tot} = [(Htris)_2 L]_{org} + [MLX]_{org}$$
(4)

If the extraction percentages obtained for the competing cations (see Figure S.5) are incorporated as  $p_M = [MLX]_{org}/[M^{2+}]_{tot}$ ,  $[MLX]_{org}$  is equal to  $p_M[M^{2+}]_{tot}$ , and  $[M^{2+}]_{aq} = (1-p_M)[M^{2+}]_{tot}$ .

The extraction percentages of the competing  $M^{2+}$  cations in a concentration range of (0.2-3.0) x 10<sup>-4</sup> M are provided in Figure S.5. From these extraction curves,  $K^{M}_{ex}$  can be obtained by fitting calculated  $p_{M}$  values to the experimentally determined values (Table 2), using a non-linear least squares fitting procedure.



**Figure S.5.**  $M^{2+}$  extraction percentages  $(p_M = [M^{2+}]_{org}/[M^{2+}]_{tot}(\%))$  for extractants 2 and 5 (10<sup>-4</sup> M; 1 ml of CH<sub>2</sub>Cl<sub>2</sub>) as a function of log[ $M^{2+}$ ] ( $M^{2+} = Ca^{2+}(a)$ ,  $Sr^{2+}(b)$ , and  $Ba^{2+}(c)$ ; 1 ml of water pH 8.9 tris-HCl buffer). The line through the circles gives the extraction percentages calculated for the complex formation of a 1:1 [MLX] complex.

When the  ${}^{226}Ra^{2+}$  experiments, in competition with the divalent cations  $Ca^{2+}$ ,  $Sr^{2+}$ , and  $Ba^{2+}$  (Figure 3), are modelled, additional equilibria and mass balances have to be considered. The extraction equilibrium for  ${}^{226}Ra^{2+}$  and its extraction constant are given in equations 5 and 6, respectively. The  ${}^{226}Ra^{2+}$  mass balance is given in equation 7, and the ligand mass balance (equation 4) is now expanded to equation 8.

$$[^{226}\text{Ra}^{2+}]_{aq} + [X^-]_{aq} + [HtrisL]_{org} \rightleftharpoons [^{226}\text{Ra}LX]_{org} + [Htris^+]_{aq}$$
(5)

$$K^{Ra}_{ex} = [^{226}RaLX]_{org}[Htris^{+}]_{aq}/[^{226}Ra^{2+}]_{aq}[HtrisL]_{org}[X^{-}]_{aq}$$
(6)

$$[^{226}Ra^{2+}]_{tot} = [^{226}Ra^{2+}]_{aq} + [^{226}RaLX]_{org}$$
<sup>(7)</sup>

$$[L]_{tot} = [HtrisL]_{org} + [MLX]_{org} + [^{226}RaLX]_{org}$$
(8)

However, because of the small amount of  $[^{226}Ra^{2+}]_{tot}$  (2.9 x 10<sup>-8</sup> M),  $[^{226}RaLX]_{org}$  can be neglected in equation 8. Similar to  $p_M$  for the competing cations,  $p_{Ra}$  is defined as  $[^{226}RaLX]_{org}/[^{226}Ra^{2+}]_{tot}$ , resulting in  $[^{226}RaLX]_{org} = p_{Ra}[^{226}Ra^{2+}]_{tot}$ , and  $[^{226}Ra^{2+}]_{aq} =$  $(1-p_{Ra})[^{226}Ra^{2+}]_{tot}$ . Thus the  $K^{Ra}_{ex}/K^{M}_{ex}$  ratio (equation 9) can be written as equation 10.

$$K^{Ra}_{ex}/K^{M}_{ex} = ([^{226}RaLX]_{org}/[^{226}Ra^{2+}]_{aq}) * ([M^{2+}]_{aq}/[MLX]_{org})$$
(9)

$$K_{ex}^{Ra}/K_{ex}^{M} = p_{Ra}(1-p_{M})/(1-p_{Ra})p_{M}$$
(10)

Since the  $K^{M}_{ex}$  values of the different extractants have different dimensions, only  $K^{Ra}_{M}/K^{M}_{ex}$  ratios are given. These ratios are obtained by fitting calculated  $p_{Ra}$  values to the experimentally determined values (Figure 3), using a non-linear least squares fitting procedure.

Di- or Trivalently Charged Extractants, 1: 1 Stoichiometry (3a,b, 4a,b, 6, and 7)



Figure S.6.  $M^{2+}$  extraction percentages  $(p_{M'} = [M^{2+}]_{org}/[M^{2+}]_{tot}$  (%)) for extractants 3a,b, 4a,b, 6, and 7 (10<sup>-4</sup> M; 1 ml of CH<sub>2</sub>Cl<sub>2</sub>) as a function of log[ $M^{2+}$ ]  $(M^{2+} = Ca^{2+}(a), Sr^{2+}(b), and Ba^{2+}(c); 1 ml of water pH 8.9 tris-HCl buffer). The line$ 

through the circles gives the extraction percentages calculated for a 1:1 [ML] complex.



**Figure S.7**. <sup>226</sup>Ra<sup>2+</sup> extraction percentages  $(p_{Ra} = [^{226}Ra^{2+}]_{org}/[^{226}Ra^{2+}]_{tot}$  (%)) for extractants **4a** (a), **4b** (b), and **7** (c) (10<sup>-4</sup> M; 1 ml of CH<sub>2</sub>Cl<sub>2</sub>), as a function of the M(NO<sub>3</sub>) (M<sup>2+</sup> = Ca<sup>2+</sup>, Sr<sup>2+</sup>, or Ba<sup>2+</sup>; 1 ml of water pH 8.9 tris-HCl buffer) concentration, with 2.9 x 10<sup>-8</sup> M <sup>226</sup>Ra<sup>2+</sup>.

The equations used to determine the extraction constants and selectivity coefficient of the divalently charged thiacalix[4]crown dicarboxylic acids (**3a,b**) have previously been described.<sup>2</sup> For thiacalix[4]crown bis(methylsulfonyl) carboxamides

(4a,b), thiacalix[4]arene dicarboxylic acid (6), and thiacalix[4]arene tricarboxylic acid (7) the same equations can be used, which results in equation 10 for the  $^{226}Ra^{2+}$  selectivity coefficient. Here only the extraction behavior of **3a**,b, **4a**,b, **6**, and **7** towards  $Ca^{2+}$ ,  $Sr^{2+}$ , and  $Ba^{2+}$  are depicted in Figure S.6, as well as the  $^{226}Ra^{2+}$  extraction curves of **4a**,b and **7** (Figure S.7).

Tetravalent Charged Extractant, 1: 2 Stoichiometry (8)



**Figure S.8**.  $M^{2+}$  extraction percentages  $(p_M = [M^{2+}]_{org}/[M^{2+}]_{tot}$  (%)) recorded with **8** at different extractant to  $M(NO_3)_2$  ratios  $(M^{2+} = Ca^{2+}, Sr^{2+}, and Ba^{2+}; 1 ml of pH 8.9 tris-HCl buffer), using a fixed extractant <math>(10^{-4} \text{ M}; 1 \text{ ml of } CH_2Cl_2)$ . The line through the circles gives the extraction percentages calculated for a 1:2 [M(Htris)\_3L)\_2] complex stoichiometry.

Surprisingly, extraction data obtained for the thiacalix[4]arene tetracarboxylic acid (8), with the competing cations  $Ca^{2+}$ ,  $Sr^{2+}$ , and  $Ba^{2+}$  (Figure S.8) suggest a 1:2 (ML<sub>2</sub>) complex stoichiometry. Consequently, models based on a 1:2 stoichiometry could be used to fit these curves, while models based on more plausible 1:1 and 2:1 stoichiometries or a combination, did not give proper fits. As a result thereof, the

equilibrium for the extraction of the divalent cations can be written as equation 11, with equation 12 describing the corresponding extraction constant.

$$[M^{2^+}]_{aq} + 2[(Htris)_4 L]_{org} \iff [M((Htris)_3 L)_2]_{org} + 2[Htris^+]_{aq}$$
(11)

$$K_{ex}^{M} = [M((Htris)_{3}L)_{2}]_{org}[Htris^{+}]_{aq}^{2}/[M^{2+}]_{aq}[(Htris)_{4}L]_{org}^{2}$$
(12)

Because of the equal volumes used, a decrease of  $[M^{2^+}]_{aq}$  in the aqueous phase leads to an equal increase of  $[M((Htris)_3L)_2]_{org}$  in the organic phase, allowing for direct comparison of the concentrations of the two phases. This results in the equations 13 and 14 for the mass balances of  $M^{2^+}$  and L, respectively.

$$[M^{2^+}]_{tot} = [M^{2^+}]_{aq} + [M((Htris)_3L)_2]_{org}$$
(13)

$$[L]_{tot} = [(Htris)_4 L]_{org} + 2[M((Htris)_3 L)_2]_{org}$$
(14)

The extraction percentages obtained for the competing cations (see Table 1) are incorporated in equations 12-14 as  $p_M = [M((Htris)_3L)_2]_{org}/[M^{2+}]_{tot}$ ,  $[M((Htris)_3L)_2]_{org}$  $= p_M[M^{2+}]_{tot}$ , and  $[M^{2+}]_{aq} = (1-p_M)[M^{2+}]_{tot}$ .

The extraction percentages of the competing  $M^{2+}$  cations in a concentration range of (0.2-3.0) x 10<sup>-4</sup> M are provided in Figure S.8. From these extraction curves,  $K^{M}_{ex}$  can be obtained by fitting calculated  $p_{M}$  values to the experimentally determined values (Table 2), using a non-linear least squares fitting procedure.

When the  ${}^{226}Ra^{2+}$  experiments, in competition with the divalent cations  $Ca^{2+}$ ,  $Sr^{2+}$ , and  $Ba^{2+}$  (Figure S.9), are modelled, additional equilibria and mass balances have to be considered. The extraction equilibrium and its extraction constant are given

in equations 15 and 16, respectively. The  ${}^{226}Ra^{2+}$  mass balance is given in equation 17, and the ligand mass balance (equation 4) is now expanded to equation 18.

$$[^{226}Ra^{2+}]_{aq} + 2[(Htris)_4L]_{org} \rightleftharpoons [^{226}Ra((Htris)_3L)_2]_{org} + 2[Htris^+]_{aq}$$
(15)

$$K^{Ra}_{ex} = [{}^{226}Ra((Htris)_{3}L)_{2}]_{org}[Htris^{+}]_{aq}^{2}/[{}^{226}Ra^{2+}]_{aq}[(Htris)_{4}L]_{org}^{2}$$
(16)

$$[^{226}Ra^{2+}]_{tot} = [^{226}Ra^{2+}]_{aq} + [^{226}Ra((Htris)_3L)_2]_{org}$$
(17)

$$[L]_{tot} = [(Htris)_4 L]_{org} + 2[M((Htris)_3 L)_2]_{org} + 2[^{226}Ra((Htris)_3 L)_2]_{org}$$
(18)

However, because of the small amount of  $[^{226}Ra^{2+}]_{tot}$  (2.9 x 10<sup>-8</sup> M),  $[^{226}Ra((Htris)_3L)_2]_{org}$  can be neglected in equation 18. Similar to  $p_M$  for the competing cations,  $p_{Ra}$  is defined as  $[^{226}Ra((Htris)_3L)_2]_{org}/[^{226}Ra^{2+}]_{tot}$ , resulting in  $[^{226}Ra((Htris)_3L)_2]_{org} = p_{Ra}[^{226}Ra^{2+}]_{tot}$ , and  $[^{226}Ra^{2+}]_{aq} = (1-p_{Ra})[^{226}Ra^{2+}]_{tot}$ . Thus the  $K^{Ra}_{ex}/K^{M}_{ex}$  ratio (equation 19) can be written as equation 20.

$$K_{ex}^{Ra}/K_{ex}^{M} = ([^{226}Ra((Htris)_{3}L)_{2}]_{org}/[^{226}Ra^{2+}]_{aq}) * ([M^{2+}]_{aq}/[M((Htris)_{3}L)_{2}]_{org})$$
(19)

$$K_{ex}^{Ra}/K_{ex}^{M} = p_{Ra}(1-p_{M})/(1-p_{Ra})p_{M}$$
(20)

Since the  $K^{M}_{ex}$  values of the different extractants have different dimensions, only  $K^{Ra}_{M}/K^{M}_{ex}$  ratios are given. These ratios are obtained by fitting calculated  $p_{Ra}$  values to the experimentally determined values (Figure S.9), using a non-linear least squares fitting procedure.



**Figure S.9**. <sup>226</sup>Ra<sup>2+</sup> extraction percentages ( $p_{Ra} = [^{226}Ra^{2+}]_{org}/[^{226}Ra^{2+}]_{tot}$  (%)) for extractant **8** (10<sup>-4</sup> M; 1 ml of CH<sub>2</sub>Cl<sub>2</sub>), as a function of the M(NO<sub>3</sub>) (M = Ca<sup>2+</sup>, Sr<sup>2+</sup>, or Ba<sup>2+</sup>; 1 ml of water pH8.9 tris-HCl buffer) concentration, with 2.9 x 10<sup>-8</sup> M <sup>226</sup>Ra<sup>2+</sup>. The fitted curves are depicted.

#### References

- 1. Kearns, A.; Cole, L.; Haws, C. R.; Evans, D. E. *Plant Physiol. Biochem.* 1998, 36, 879-887.
- Van Leeuwen, F. W. B.; Beijleveld, H.; Miermans, C. J. H.; Huskens, J.; Verboom,
   W.; Reinhoudt, D. N. *submitted for publication*.