V. Jolad *et al*.

Solution conformation of $d(C_4ACAC_4TCT)_2$; an intramolecularly folded i-motif from the insulin minisatellite.

UV Thermal melting data.

Table 1. Melting temperatures for the single strand DNA at different pHs over wide range of concentration. Temperature was changed in 0.5 ^oC steps with a 5 min hold time at each temperature.

[DNA] /µM	T _m / °C					
	рН 7.2	рН 6.1	рН 5.0			
1.2	*	36.8	50.9			
2.5	25.3	38.2	52.4			
4.6	29.2	39.3	51.4			
8.5	33.5	41.1	52.7			
11.0	35.2	41.7	53.5			
15.6	36.7	41.4	52.7			
19.7	38.2	43.0	53.8			
22.3	41.4	44.0	53.3			
29.0	43.1	44.8	53.6			

Melting temperature too low for the equipment to reliably measure

Table 2 Thermodynamic parameters for i-motif formation extracted from oligomer concentration studies at different pH values.

Thermodynamic parameters	рН 7.2	рН 6.1	рН 5.0
∆H°/kJmol ⁻¹	-110.8±6.2	-339.3±9.3	-903.7±12.6
$\Delta S^{\circ}/Jmol^{-1}K^{-1}$	-379.6±10.9	-1098 ± 14.3	-2792±17.5
∆G°₀/kJmol ⁻¹	-7.4±1.1	-39.5±3.6	-141.5±5.2
$\Delta G^{\circ}_{25}/kJmol^{-1}$	$+2.1\pm0.02$	-12.1±1.4	-71.7±3.8
$\Delta G^{\circ}_{37}/kJmol^{-1}$	$+6.7\pm0.04$	+1.1	-38.2±0.8
T _m at [NMR] / °C	29.5	42.8	54.2

Residue	Chemical shifts of protons in ppm											
	H1'	H2'	H2"	Н3'	H4'	Н5'	H5"	H5/Me	H6/H8	Imino	Am	nino
											cis	trans
C1	6.47	1.97	2.62	4.87	3.83	na	na	5.95	7.73	15.57	9.55	8.33
C2	5.97	b	2.62	na	4.24	na	na	5.72	7.84		9.86	8.51
C3	6.18	b	2.31	4.56	na	na	na	5.72	7.48	15.58	9.56	7.74
C4	6.17	b	2.68	4.65	4.16	na	na	5.70	7.94	-	9.75	8.50
A5	6.18	2.12	с	4.83	4.21	na	na	-	8.41	-	9.	71
C6	6.53	1.99	2.64	4.86	4.42	na	na	6.07	8.07	na	8.	50
A7	6.69	2.25	2.71	4.42	na	na	na	-	8.34	-	9.	47
C8	6.06	2.24	2.81	na	na	na	na	5.79	7.56		8.98	ь
С9	6.70	b	2.71	4.86	4.42	na	na	5.99	7.98	15.45	9.18	8.24
C10	6.03	b	2.47	4.80	na	na	na	5.43	7.40	b	b	b
C11	5.96	b	с	4.07	na	na	na	5.67	7.76	15.68	8.36	b
T12	5.94	2.19	2.74	4.46	3.83	na	na	1.88	7.23	11.10	-	-
G13	6.27	2.74	2.98	4.19	na	na	na	-	8.12	11.28	-	-
T14	5.92	2.02	2.99	4.25	3.91	4.10	3.85	1.40	7.30	11.10	-	-
C15	6.02	1.67	2.77	na	na	na	na	5.62	7.56		9.16	Б
C16	6.23	1.85	2.63	na	3.78	na	na	5.99	7.98	15.71	10.0	8.22
C17	6.53	2.40	2.49	4.51	4.24	na	na	6.03	7.87		9.44	b
C18	6.44	b	с	4.58	4.09	na	na	5.91	7.66	15.66	9.13	8.23
A19	6.88	b	с	b	4.51	na	na	-	8.41	-	9.	71
C20	6.45	b	с	4.16	b	na	na	5.37	7.43	10.98	8.	43
A21	6.83	1.85	с	4.69	b	na	na	-	8.26	-	9.	27
C22	6.38	2.14	2.58	4.71	4.30	na	na	5.88	7.65	15.66	9.13	8.20
C23	6.29	2.06	2.51	4.47	4.10	na	na	6.08	8.06	h.	8.52	D
C24	6.81	1.85	с	D	D	na	na	6.02	7.57	D	D	D
C25	6.43	2.14	2.60	0	4.07	na	na	5.67	7.76		9.85	8.52
T26	6.42	2.14	2.61	4.50	4.24	na	na	1.98	7.85	11.28	-	-
G27	5.97	2.61	3.03	4.52	3.92	na	na	-	8.17	11.28	-	-
T28	с	с	с	4.41	4.08	na	na	1.74	7.14	11.39	-	-

Table3: Chemical shifts of the protons of a DNA i-motif at pH 6 and 5 °C, the shifts are referenced to TSP at 0 ppm.

na:not assigned.

b:Not identified due to overlapping cross-peaks or lack of connectivity.

c:Barely resolved and not distinguished.

Table 4: The changes in aromatic proton chemical shifts caused by reducing the pH from 7 to 6 at 5 0 C (ppm)

	Chemical Shift Change				
Residue	∂ _{рн 6} -∂ _{рн 7}				
	H6/ H8	H5/ Me			
C1	0.01	0.03			
C2	-0.06	0.05			
C3	0.03	0.06			
C4	0.00	0.35			
A5	-0.05	-			
C6	-0.10	0.08			
A7	0.12	-			
C8	0.02	-0.09			
C9	0.00	0.00			
C10	0.00	0.07			
C11	-0.01	-0.01			
T12	0.00	0.00			
G13	0.02	-			
T14	0.01	0.01			
C15	0.00	0.03			
C16	0.00	0.00			
C17	0.02	0.08			
C18	-0.03	0.01			
A19	-0.05	-			
C20	-0.01	0.16			
A21	0.19	-			
C22	0.00	0.00			
C23	-0.07	0.00			
C24	0.00	0.01			
C25	-0.01	-0.01			
T26	0.02	0.00			
G27	-0.09	-			
T28	0.00	0.01			

∂: Chemical shift

Intercalation patterns between inter-strand residues revealing the i-motif topology								
H1'-H1'	NH ₂ -H2'/ 2"	Н1'-Н4'	Н3'-Н4'	C ⁺ .C N3H	C ⁺ .C-H2'			
C1-C23	С16-С15Н2'	C2-C9	C9-C18	C1-C15	C1:C15-C25			
C4-C22	С17-С23Н2'	C8-A19	C3-C25	C2-C16				
C8-C17	С8-С6Н2'	T12-C25		C3-C17				
G13-G27	C25-C17H2"	C23-C4		C4-C18				
T12-T26	C18-C23H2'	T26-T12		C8-C22				
C10-C17	C18-C23H2"			C9-C23				
	C2-C1H2"			C11-C25				

Table 5: Intercalated nOe connections across the grooves revealing the folding topology of the i-motif at pH 6 and 5 °C.

Electronic Supplementary Material for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2005

Some sample spectra

Figure 1. Section through the 500 MHz NOESY spectrum showing cytosine imino and amino correlations illustrating C⁺.C base-pair formation. Two lines of same colour indicate cytosines of same base-pair.

Electronic Supplementary Material for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2005

Figure 2: Sections of 500 MHz NOESY spectrum illustrating the key nOe connections to reveal a cytosine imino proton of C18 residue.

-

C18 trans Am-Im

8.0

8.0

C18 H6- Im

7.5

7.5

15.0

15.2

15.4

15.6

15.8

16.0

Cytosine Imino ppm

8,5

0

8.5

9.0

C18 cis Am- Im

9.0

15.0

15.2

15.4

15.8

16.0