Supplementary Information

The 5-Me of thyminyl (T) interaction with the Neighboring Nucleobases dictate the relative stability of isosequential DNA/RNA hybrid duplexes

Subhrangsu Chatterjee, Wimal Pathmasiri,& Jyoti Chattopadhyaya*

Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden, E-mail: jyoti@boc.uu.se

Table S1. Calculation of $\Delta p K_a$ and $\Delta \Delta G_{pKa \text{ of each mid bp}}^{\circ}$ (kJ mol⁻¹)[†] values from the model monomeric donors and acceptors (*i.e.* Monomeric base-pair) representing the H-bonding base pairing contribution of the middle base-pairs (mid base-pair *i.e.* excluding the terminal base pairs). The net hydrogen bonding stabilization in different base pairs are different. The $\Delta \Delta \Delta G_{pKa}^{\circ}$ values are predicting the relative hydrogen bonding stabilization of one base pair over another.

Monomeric base-pair	dC-rG	rC-dG	dG-rC	rG-dC	dA-U	rA-T	T-rA	U-dA	
$\Delta \mathrm{p}{K_{\mathrm{a}}}^{\ddagger}$	4.94	5.35	5.35	4.94	5.43	6.43	6.43	5.43	
$\Delta\Delta G^{0}_{p \text{Ka of each mid bp}}$	28.20	30.60	30.60	28.20	31.1	36.4	36.4	31.1	
$[\Delta \Delta p K_a]_{(DR)-(RD)}$	-0.41		+0	.41	-1.	00	+1.00		
$\Delta\Delta\Delta G^{ m o}_{ m pKa~of}$ each mid bp	-2.40		+2.40		-5.	30	+5.30		

[†]See Table S2 for calculation of total free energies for base-pairing using free energies for individual middle base-pairs . [‡] For the free energy determination of the middle bp residues in duplex the ΔG_{pKa}^{o} values of the Etp(d/rN)pEt (**6a** – **10a**) and (**6b** – **10b**) (ref 14) have been used. [‡] ΔpK_a for (rG-dC): $[pK_a]_{7b}$ - $[pK_a]_{10a}$, for (dG-rC): $[pK_a]_{7a}$ - $[pK_a]_{10b}$, for (rC-dG): $[pK_a]_{7a}$ - $[pK_a]_{10b}$, for (dC-rG): $[pK_a]_{7b}$ - $[pK_a]_{10a}$ for (U-dA): $[pK_a]_{8b}$ - $[pK_a]_{6a}$ and for (T-rA): $[pK_a]_{9a}$ - $[pK_a]_{6b}$; (dA-U): $[pK_a]_{8b}$ - $[pK_a]_{6a}$ and for (rA-T): $[pK_a]_{9a}$ - $[pK_a]_{6b}$; $[\Delta \Delta pK_a]_{(DR)-(RD)} = [\Delta pK_a]_{DR}$ - $[\Delta pK_a]_{RD}$

Table S2. Calculation of the $\Delta\Delta\Delta G_{pKa \text{ of each terminal bp}}^{o}$ (kJ mol⁻¹)[†] values from the model monomeric donors and acceptors to represent the H-bonding contribution of the base pairing of terminal base-pairs (3' \rightarrow 5') in DNA-RNA and RNA-DNA hybrid duplexes.

Terminal base-pair	dC ³ - rG ⁵	rC ^{3´} - dG ^{5´}	dG ^{3´} - rC ^{5´}	rG ^{3´} - dC ^{5´}	dA ^{3'} - U ^{5'}	rA ³ - T ⁵	T ³ - rA ⁵	U ³ - dA ⁵
$\Delta p K_{ m a}$	4.92	5.16	5.75	5.15	5.38	6.24	7.01	5.91
$\Delta\Delta G_{pKa}$ for terminal base-pairs	28.1	29.4	32.9	29.5	30.8	35.3	40.0	33.80
$\Delta\Delta p K_{a [DR-RD]}$	-0	-0.24		60	-0.	.86	1.	10
$\Delta\Delta\Delta G_{pKa [DR-RD]}$	-1	1.3	3	.4	-4	.5	6	.2

[†] See Table S2 for calculation of total free energies for base-pairing using free energies for individual terminal base-pairs. For the 3'- or 5'-terminal base-pairing in duplex the $\Delta G_{pK_a}^{o}$ values of the (d/rN)pEt (**1a** – **5a**) and (**1b** – **5b**) and Etp(d/rN)pEt (**6a** – **10a**) and (**6b** – **10b**) (ref 14) have been used. We have used Etp(d/rN)pEt (**6a** – **10a**) and (**6b** – **10b**) as the model for the 5'-phosphate since 3'-phosphate group in the bis-phosphate do not have any influence on the p K_a of the constituent nucleobase. **Table S3.** Calculation for $\Sigma \Delta p K_a$ for all fourteen sequences $(1 - 14)^4$ in **RR**, **DD**, **DR**, and **RD** combination (shown in the right four columns) based on the pK_a s of the middle and terminal base pairs The H-bonding in the **RR** duplexes are generally more stable (with some rare exception, *e.g.* $8_{RR}/8_{DD}/8_{DR}/8_{RD}$) than those of the **DD**, **DR** or **RD** because their $\Sigma \Delta p K_a$ are relatively smaller.

Sequence ^a	Duplex Sequences ^a	$\frac{\Sigma\Delta pK_{a}}{RR}^{C}$	$\Sigma \Delta p K_a$ DD ^C	$\Sigma \Delta p K_a$ DR ^C	$\frac{\Sigma \Delta p K_a}{RD}^{C}$
$(1_{RR}/1_{DD}/1_{DR}/1_{RD})$	5'-TCCCTCCTCTCC 3'-AGGGAGGAGAGG	62.38	66.70	65.03	64.28
$(2_{RR}/2_{DD}/2_{DR}/2_{RD})$	5'-CCTTCCCTT 3'-GGAAGGGAA	48.35	52.07	51.23	49.35
$(3_{RR}/3_{DD}/3_{DR}/3_{RD})$	5'-TTCCCTTCC 3'-AAGGGAAGG	47.26	50.98	50.21	48.23
$(4_{RR}/4_{DD}/4_{DR}/4_{RD})$	5'-GCTCTCTGGC 3'-CGAGAGACCG	51.85	55.17	54.89	52.30
$(5_{RR}/5_{DD}/5_{DR}/5_{RD})$	5'-CTCGTAC CTTCCGGTCC 3'-GAGCATGGAAGGCCAGG	89.02	95.42	93.36	91.41
$(6_{RR}/6_{DD}/6_{DR}/6_{RD})$	5'-CTCGTACCTTTCCGGTCCC 3'-GAGCATGG AAAGGCCAGG	94.55	101.71	99.79	96.84
$(7_{\rm RR}/7_{\rm DD}/7_{\rm DR}/7_{\rm RD})$	5'-TAGTTATCTCTATCT 3'-ATCAATAGAGATAGA	81.56	90.44	88.29	84.15
$(8_{RR}/8_{DD}/8_{DR}/8_{RD})$	5'-GCACAGCC 3'-CGTGTCGG	41.28	43.64	41.11	43.93
$(9_{RR}/1_{DD}/1_{DR}/1_{RD})$	5'-GAGCTCCCAGGC 3'-CTCGAGGGTCCG	61.93	65.65	63.18	64.59
$(10_{RR}/10_{DD}/10_{DR}/10_{RD})$	5'GCCGAGGTCCATGTCGTACGC 3'-CGGCTCCAGGTACAGCATGCG	109.25	117.01	113.83	112.83
$(11_{RR}/11_{DD}/11_{DR}/11_{RD})$	5'-TGTACGTCACAACTA 3'-ACATGCAGTGTTGAT	79.91	87.67	83.09	84.91
$(12_{RR}/12_{DD}/12_{DR}/12_{RD})$	5'-TATACAAGTTATCTA 3'-ATATGTTCAATAGAT	81.38	90.82	86.15	86.56
$(13_{RR}/13_{DD}/13_{DR}/13_{RD})$	5'-CGACTATGCAAAAAC 3'-GCTGATACGTTT TTG	80.41	88.09	81.54	87.36
$(14_{RR}/14_{DD}/14_{DR}/14_{RD})$	5'-CGCAAAAAAAAAACGC 3'-GCGTTTTTTTTTGCG	85.94	94.38	84.97	95.79

^a Sequences (1 - 14) are taken from ref 4. The type of duplexes (*i.e.*, whether **RR**, **DD**, **RD** or **DR**) are referred to as subscript to the sequence number in the text, for example, as $\mathbf{1}_{\mathbf{RR}}$, $\mathbf{1}_{\mathbf{DD}}$, $\mathbf{1}_{\mathbf{RD}}$, and $\mathbf{1}_{\mathbf{DR}}$. and so on. ^c $\Sigma \Delta p K_a$ includes the sum of $p K_a$ differences of the middle (Table S4) as well as the terminal base-pairs (Table S5) for **RR/DD/DR** and **RD** duplexes.

DR	
n]	Ś
D	air
-	e-p
, d	as
rA	alb
Ļ.	ini
Ċ	irm)
Ч.	s te
,dС	lus
Q	еp
Ġ	lbb
p	mi.
gu	of
airi	ā
d	\mathbf{R}
ase	pu
q (X a
ώ	Ĩ
nd) ss
a da	lue
ч.	va
bot	$\delta K_{\rm a}$
'n	_ ∑
eri	irΣ
Ē	he
lal	th t
nin	wi
err	I) ⁴
le t	14
l th	- -
anc) S
(p	exe
Mie	ple
S	np
dle	Ш.
nid	Ā
er	l R
th	∕ ii
fo .	-d∠
ber	Ū.
III	Ę.
n	rĄ
otal	Ċ
e tc	-d
Γhέ	5 Ū
4	ĨĊ,
Ś	с с
bla	d r(
Ta	anc

ΣΔpKa RD ⁱ	64.28	49.35	48.23	52.30	91.41	96.84	84.15	43.93	64.59	112.83	84.91	86.56	87.36	95.79
ΣΔpKa DR ^h	65.03	51.23	50.21	54.89	93.36	99.79	88.29	41.11	63.18	113.83	83.09	86.15	81.54	84.97
Term 3' 5' bp	ಲರ	ΤA	ರರ	ರರ	ರರ	ರರ	۲Ą	ರರ	ರರ	ರರ	Ł	Ł	ರರ	ರರ
Term 5' 3' bp	Τđ	ರಿರ	۲Ą	೮೮	ರಿರ	ರಿರ	₽₹	೮೮	೮೮	೮೮	TA	۲Ą	ರಿರ	ರಿರ
Mid (C-G) bp ^g	Ŀ	4	4	3	9	9	e	3	4	9	4	7	6	7
Mid (G-C) bp	•	0	0	7	e	e	1	1	æ	9	7	Η	17	7
Mid (A-T/U) bp ^e	0	0	0	0	1	1	e	7	6	3	4	S	٢	10
Mid (T/U-A) bp ^d	e	e	e	3	Ś	9	9	0	1	4	e	S	6	0
Total (A-T/U) bp ^c	0	0	0	0	1	1	e	6	6	3	N	9	٢	10
Total (T/U-A) bp ^b	4	4	4	3	Ś	9	×	0	1	4	4	9	7	0
Duplex Sequence ^a	5'-TCCCTCCTCC-3' 3'-AGGGAGGAGAGG-5'	5'-CCTTCCCTT-3' 3'-GGAAGGGAA-5'	5'-TTCCCTTCC-3' 3'-AAGGGAAGG-5	5'-GCTCTCGGC-3' 3'-CGAGAGACCG-5'	5'-CTCGTAC CTTCCGGTCC-3' 3'-GAGCATGGAAGGCCAGG-5'	5'-CTCGTACCTTTCCGGGTCC-3' 3'-GAGCATGG AAAGGCCAGG-5'	5'-TAGTTATCTCTATCT- 3' 3'-ATCAATAGAGATAGA-5'	5'-GCAGCC-3' 3'-CGTGTCGG-5'	5'-GAGCTCCCAGGC-3' 3'-CTCGAGGGTCCG-5'	5'GCCGAGGTCCATGTCGTACGC-3' 3'CGGCTCCAGGTACAGCATGCG-5'	5'-TGTACGTCACCAACTA-3' 3'-ACATGCAGTGTTGAT-5'	5'-TATACAAGTTATCTA-3' 3'-ATATGTTCAATAGAT-5'	5'-CGACTATGCAAAAAC-3' 3'-GCTGATACGTTT TTG-5	5'-CGCAAAAAAAAACGC-3' 3'-GCGTTTTTTTTTGCG-5'
Seq No.	(1 _{DR} /1 _{RD})	$(2_{DR}/2_{RD})$	$(3_{\rm DR}/3_{\rm RD})$	$(4_{\rm DR}/4_{\rm RD})$	$(5_{\rm DR}/5_{\rm RD})$	$(6_{\mathrm{DR}}/6_{\mathrm{RD}})$	$(7_{\rm DR}/7_{\rm RD})$	$(8_{\rm DR}/8_{\rm RD})$	$(9_{\mathrm{DR}}/9_{\mathrm{RD}})$	$(10_{DR}\!/10_{RD})$	$(11_{DR}/11_{RD})$	$(12_{DR}/12_{RD})$	$(13_{DR}/13_{RD})$	$(14_{DR}/14_{RD})$

^aThe DNA-RNA (**DR**) and RNA-DNA (**RD**) duplexes, 1 - 14, are taken from ref. 4 and $\Sigma \Delta p K_a$ for **DR** and **RD** are used in the plot for Figure 3. ^[b] The total number of middle T/U-A basepairs (bp) for **DR** or **RD**.^cA-T/U basepairs (bp) for **RD** or **DR** duplexes in each sequence.^a total no of middle T/U-A base-pairs.^e total no. of A-T/U base pairs.^[f] total G-C bp (mid) in **DR** and **RD** (1-14)⁴, ^g total C-G base pairing (mid) in **DR** or **RD**.^h $\Sigma \Delta p Ka$ $C) * total no of mid dG-C bp + \{\Delta pKa terminal base-pair\}(5'3) + \{\Delta pKa terminal base-pair\}'(3'5')] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (U-A)\} * total no of mid (C)\} + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (U-A)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [\{\Delta pKa (RD)\} + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [(\Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [(\Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [(\Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [(\Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD)] + \frac{1}{2} \Delta pKa (RD) = [(\Delta pKa (RD)] + \frac{1}{2} \Delta pKa$ $U-A bp + \{\Delta pKa (A-T)\}^{total no of mid A-T bp} + \{\Delta pKa (C-dG)\}^{total no of mid C-dG bp} + \{\Delta pKa (G-dC)\}^{total no of mid G-dC bp} + \{\Delta pKa (G-dC)\}^$ $(\mathbf{DR}) = [\{\Delta p Ka (T-A)\}^* total no of mid T-A bp + \{\Delta p Ka (A-U)\}^* total no of mid A-U bp\} + \{\Delta p Ka (dC-G)\}^* total no of mid dC-G bp + \{\Delta p Ka (dG$ terminal base-pair}(5'3)+ {\Delta pka terminal base-pair}(3'5')]

1	$\left[\Delta\Delta G^{0}_{\mathrm{bp}} ight]_{\mathrm{DR-RD}}$ kcal mol' ^{1 [d]}	0.55	2.16	2.26	3.21	2.22	3.47	5.19	-3.19	-1.83	1.26	-2.40	-0.57	-7.43	-13.74
	$\left[\Delta G^{0}_{bp} ight]_{RD}$	87.55	67.24	65.69	71.19	124.38	131.79	114.38	59.60	87.71	153.31	115.19	117.38	118.31	129.50
1	$\left[\Delta G^{0}_{\mathrm{bp}} ight]_{\mathrm{DR}}$ kcal mol ^{-1 [b]}	88.10	69.40	67.95	74.40	126.60	135.26	119.57	55.93	85.88	154.57	112.79	116.81	110.88	115.76
	Duplex Sequence ^[a]	5'-TCCCTCCTCCC-3' 3'-AGGGAGGAGGAGG-5'	5'-CCTTCCCTT-3' 3'-GGAAGGGAA-5'	5'-TTCCCTTCC-3' 3'-AAGGGAAGG-5	5'-GCTCTCGGC-3' 3'-CGAGAGACCG-5'	5'-CTCGTAC CTTCCGGTCC-3' 3'-GAGCATGGAAGGCCAGG-5'	5'-CTCGTACCTTTCCGGGTCC-3' 3'-GAGCATGG AAAGGCCAG5'	5'-TAGTTATCTCTATCT-3' 3'-ATCAATAGAGATAGA-5'	5'-GCACAGCC-3' 3'-CGTGTCGG-5'	5'-GAGCTCCCAGGC-3' 3'-CTCGAGGGTCCG-5'	5'GCCGAGGTCCATGTCGTACGC-3' 3'CGGCTCCAGGTACAGCATGCG-5'	5'-TGTACGTCACAACTA-3' 3'-ACATGCAGTGTTGAT-5'	5'-TATACAAGTTATCTA-3' 3'-ATATGTTCAATAGAT-5'	5'-CGACTATGCAAAAAC-3' 3'-GCTGATACGTTT TTG-5	5'-CGCAAAAAAAAAACGC-3' 3'-GCGTTTTTTTTGCG-5'
	Seq.No	$(1_{\rm DR}/1_{\rm RD})$	$(2_{DR}/2_{RD})$	$(3_{\rm DR}/3_{\rm RD})$	$(4_{\rm DR}/4_{\rm RD})$	$(5_{\rm DR}/5_{\rm RD})$	$(6_{\mathrm{DR}}/6_{\mathrm{RD}})$	$(7_{\rm DR}/7_{\rm RD})$	$(8_{\rm DR}/8_{\rm RD})$	$(9_{\rm DR}/9_{\rm RD})$	$(10_{\mathrm{DR}}/10_{\mathrm{RD}})$	$(11_{DR}/11_{RD})$	$(12_{DR}/12_{RD})$	$(13_{\mathrm{DR}}/13_{\mathrm{RD}})$	$(14_{\mathrm{DR}}/14_{\mathrm{RD}})$

Table S5 : Calculation of total Gibb's free energy for base pairing of all **DR** and **RD** (1-14)⁴ reference duplexes.

9

kcal mol⁻¹ in **RD** using the free energy in monomeric base pairing and following the equation ie $[\Delta G^0_{bp}]_{RD} = \{[\Delta \Delta G^0_{pKa of each mid bp}]_{RD}\}^*$ following the equation *i.e.* $[\Delta G^{o}_{pb}]_{DR} = \{[\Delta \Delta G^{o}_{pka \text{ of each mid bp}}]_{DR}\} * Number of middle bp + \{[\Delta \Delta G^{o}_{pka \text{ of terminal basepair (3.5.)}}]_{DR} + \{[\Delta \Delta G^{o}_{pka \text{ of terminal basepair (3.5.)}}]_{DR} + \{[\Delta \Delta G^{o}_{pka \text{ of terminal basepair (3.5.)}}]_{DR} + \{[\Delta \Delta G^{o}_{pka \text{ of terminal basepair (3.5.)}}]_{DR} + \{[\Delta \Delta G^{o}_{pka \text{ of terminal basepair (3.5.)}}]_{DR} + \{[\Delta \Delta G^{o}_{pka \text{ of terminal basepair (3.5.)}}]_{DR} + \{[\Delta \Delta G^{o}_{pka \text{ of terminal basepair (3.5.)}}]_{DR} + \{[\Delta \Delta G^{o}_{pka \text{ of terminal basepair (3.5.)}}]_{DR} + \{[\Delta \Delta G^{o}_{pka \text{ of terminal basepair (3.5.)}}]_{DR} + \{[\Delta \Delta G^{o}_{pka \text{ of terminal basepair (3.5.)}}]_{DR} + \{[\Delta \Delta G^{o}_{pka \text{ of terminal basepair (3.5.)}}]_{DR} + \{[\Delta G^{o}_{pka \text{ of terminal basepair (3.5.)}}]_{DR}$ ^a All fourteen sequences, **DR** and **RD** (1-14) ⁴. ^b Total base pairing energy in kcal mol⁻¹ in **DR** using the free energy in monomeric base pairing and terminal basepair (5.3)] DR }, the energy calculation is done in kcal mol⁻¹ dividing the base-pairing energy (kJmol⁻¹) by 4.2.^c Total base pairing energy in Number of middle bp + {[$\Delta \Delta G^o_{pKa \text{ of terminal basepair (3.5)}}$]**RD** + {[$\Delta \Delta G^o_{pKa \text{ of terminal basepair (5.3)}}$]RD }. ^d Difference in bp energy (kcal mol⁻¹) between **DR** and **RD** with same sequence context. $(1-14)^{[4]}$ ∞