Photoinduced switching of intramolecular hydrogen bond between amide NH and carboxylic oxygen

Takashi Matsuhira, ^a Hitoshi Yamamoto, ^{*a} Akira Onoda, ^b Taka-aki Okamura, ^a and Norikazu Ueyama ^c

^a Department of Macromolecular Science, Graduate School of Science, Osaka University, Machikaneyama 1-1,

Toyonaka, Osaka 563-0043, Japan. Fax: +81-6-6850-5474, Tel: +81-6-6850-5451; E-mail:

jin@chem.sci.osaka-u.ac.jp

^b Department of Chemistry, Graduate School of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan. Fax: +81-3-5228-8251; Tel: +81-3-3260-4272

^c Center for Advanced Science and Innovation, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan. Fax: +81-6-6879-7796; Tel: +81-6-6979-7795

Electrically Supplemental Information

Contents

- 1. Crystallographic data
- 2. Schematic illustration of low temperature ¹H NMR spectrum measurement
- 3. COSY NMR spectrum of *E*-2'/*Z*-2' under photoirradiation
- 4. First-order kinetics of thermal isomerization of Z-1 and Z-2'

1. Crystallographic data

Crystallographic Data Collections and Structure Determinations of tetramethyl -ammonium; (*E*)-3-{[3-(2,2-dimethyl-propionylamino)-benzylidene-amino]-benzoate (*E*-2). A suitable single colorless crystal of tetramethyl-ammonium; 3-{[3-(2,2-dimethyl-propionylamino)-benzylidene-amino]-benzoate (*E*-2) was mounted on a fine nylon loop with nujol and immediately freezed at 200 K. All measurements were performed on a Rigaku RAXIS-RAPID Imaging Plate differactometer with graphite monochromated MoK α radiation. The structures were solved by direct method (SIR 92) and the following refinements were performed using SHELXL-97 and teXsan crystallographic software package. All non-hydrogen atoms were refined anisotropically. H1 was placed by reflection and hydrogen atoms without H1 were placed in the calculated position and including least-square refinement. The basic crystallographic parameters are listed in Table S1.

Complex	<i>E</i> -2	
Formula	$C_{23}H_{31}N_3O_3$	
Formula weight	397.52	
Crystal Color, Habit	colorless, platelet	
Crystal Dimensions, mm	0.30 X 0.30 X 0.20	
Crystal system	monoclinic	
Space group	$P2_1/n$	
A, Å	16.08(2)	
B, Å	8.501(8)	
C, Å	17.00(3)	
a, deg	—	
β, deg	104.5(1)	
γ, deg	—	
V, Å ³	2249(1)	
Z	4	
D _{calc} , g/cm ³	1.173	
F (000)	1856.00	

 Table S1.
 Crystal Data and Collection Parameters

Radiation	ΜοΚα
Temp, °C	-73±1
$2 \theta_{\text{max}}, \text{deg}$	54.5
Unique data	21943
Unique data $(I > 3\sigma(I))$	5009
No. of variables	262
R_1	0.059
$_{\rm W}R_2$	0.103
GOF	0.86
Max Shift / Error	0.00

2. Schematic illustration of low temperature ¹H NMR spectrum measurement

3. COSY NMR spectrum of *E*-2'/*Z*-2' under photoirradiation

Fig. S1 Photoirradiating COSY NMR spectrum of carboxylate (E-2'/Z-2') 5 mM in THF-d₈ solution at 203 K.

COSY NMR spectrum was measured under photoirradiation to assign the signals of Z-2'. *ortho*-Coupling between Hc-Hb-Hd and Hc'-Hb'-Hd' and *meta*-coupling between Ha-Hc-Hd and Ha'-Hc' were observed.

4. First-order kinetics of thermal isomerization of Z-1 and Z-2'

Thermal reversion rate constants of carboxylic acid Z-1 and carboxylate Z-2' in the temperature range from 213 to 243 K were measured by using the time course experiments of UV-vis spectra at 313 nm. Thermal reversion rate k was obtained from the equation (1). The thermal reversion rate constants were obtained from the slopes of the plots, $ln [A_{trans} / (A_{trans} - A_{trans})]$ versus time(t).

 $kt = ln \left[A_{trans} / (A_{trans} - A(t)) \right] \quad (1)$

A trans: 313 nm optical density of trans isomer,

A (t) : 313 nm optical density at t seconds after irradiation was finished

The thermal reversion rate constants of Z-1 and Z-2' at several temperatures were shown in Table S2. The thermal reversion of carboxylic acid Z-1 was faster than that of carboxylate Z-2' in the region from 213 to 243 K. This result indicates that the NH…O intramolecular hydrogen bond forming at carboxylate Z-2' is stronger than that of carboxylic acid Z-1.

Activation energies of thermal reversion of *Z*-1 and *Z*-2' were obtained from the equation (2), so called *Arrhenius's plot*.

 $k = A \operatorname{EXP}(-E / RT) \quad (2)$

(*R* : gas constant, *T* : absolute temperature, *E* : activation energy, *A* : frequency factor)

Temp. (K)	<i>Z</i> -1 / E-1	Z-2' / E-2'
243	3.1×10 ⁻²	1.3×10 ⁻²
233	9.5×10 ⁻³	3.4×10 ⁻³
223	1.9×10 ⁻³	5.6×10 ⁻⁴
213	4.0×10 ⁻⁴	1.0×10 ⁻⁴

Table S2 Thermal Reversion Rates from Z to E lisomers