Supplementary Information

The Chemical Nature of the 2'-substituent in the Pentose-Sugar Dictates the Pseudoaromatic Character of the Nucleobase (pK_a) in DNA/RNA

Subhrangsu Chatterjee, Wimal Pathmasiri, Oleksandr Plashkevych, Dmytro Honcharenko, Oommen P. Varghese, Mohitosh Maiti & Jyoti Chattopadhyaya*

> Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden.

> > Fax:+46-18554495 E-mail: jyoti@boc.uu.se

Figure S1. The stack plots of the pH-dependent ¹H NMR chemical shifts of aromatic protons for compounds 2a-2i, 4a-4j, 5c-5j and 6c-6i at 298 K [only 10-11 pHs points (including two plateaus at two extreme pHs) are shown out of total $\sim 20 - 33$ pHs used for the titration plots, see Experimental section for details].

Figure S2. Sigmoidal plots of the pH-dependent chemical shifts of aromatic protons for compounds 2a-2i, 4a-4j, 5c-5j and 6c-6i to calculate the pKa of N1/N3/N7 of the nucleobase as well as the protonation pK_a of N-azetidine as well as N-amine.

Figure S3. Hill plot analysis of the pH-dependent chemical shifts of aromatic protons for compounds 2a-2i, 4a-4j, 5c-5j and 6c-6i to calculate the p K_a of the corresponding nucleobases as well as nitrogen protonation in amine and in azetidine modified nucleotides.

Figure S4. Sigmoidal plots of the pH-dependent ³¹P chemical shifts of 3'and 5' phosphorus of the 3',5'-bis-ethyl and 3'mono ethyl phosphates *i.e.*, **5c-j**, **6c-i** to calculate the protonation pKa of N-azetidine as well as N-amine.

Figure S5. Hill plot analysis of sigmoidal curves in Figure S4.

Table S1. Theoretical proton affinities (PA), thermodynamic circle's components enthalpies Gibbs free energies (gas phase and solvation), and the theoretical pK_a values of the nucleobases, 2'-ribo-, 2'-deoxy-, 2'-amino-, 2'-methoxy-, oxetane and azetidine nucleosides as well as the experimental pK_a values for the corresponding bisethylphosphate nucleotides.

Table S2. Frontier orbitals of the 2'-ribo, 2'-deoxy, 2'-amino-, 2'-methoxy-, oxetane- and azetidine- nucleosides.

Table S3. Calculated acid-base dipole moments differences (Δ dipole moments) of the nucleobases, 2'-deoxy-, 2'-ribo-, 2'-OMe-, oxetane-, and azetidine- nucleosides as well as the experimental p*K_a* values of the respective bis-ethylphosphate nucleotides.

Figure S1. The stack plots of the pH-dependent ¹H NMR chemical shifts of aromatic protons for compounds 2a-2i, 4a-4j, 5c-5j and 6c-6i at 298 K [only 10-11 pHs points (including two plateaus at two extreme pHs) are shown out of total $\sim 20 - 33$ pHs used for the titration plots, see Experimental section for details].

(1) pH dependent ¹H chemical shift (in D₂O) of Etp-2'OMe-ApEt (2a) at 298 K

Etp2'OMeApEt (2a)

(2) pH dependent ¹H chemical shift (in D₂O) of Etp-2'OMe-GpEt (2b) at 298 K

(3) pH dependent ¹H chemical shift (in D₂O) of Etp-2'OMe-CpEt (2c) at 298 K

Etp2'OMeCpEt(2C)

(4) pH dependent ¹H chemical shift (in D₂O) of Etp-2'OMe-TpEt (2d) at 298 K

Et2'OMeTpEt (2d)

(5) pH dependent ¹H chemical shift (in D₂O) of Etp-2'OMe-GpEt for N7 protonation (2b) at 298K

2'OMeApEt (2f) рΗ H2A H8A 6.43 5.28 4.92 4.69 4.20 3.72 3.49 2.91 2.77 H2A H8A 1.55 Т Τ 8.5 8.4 ppm

(6) pH dependent ¹H chemical shift (in D₂O) of 2'OMe-ApEt (2f) at 298 K

(7) pH dependent ¹H chemical shift (in D₂O) of 2'OMe-GpEt (2g) at 298 K

(8) pH dependent ¹H chemical shift (in D₂O) of 2'OMe-CpEt (2h) at 298 K

2'OMeCpEt (2h)

(9) pH dependent ¹H chemical shift (in D₂O) of 2'OMe-TpEt (2i) at 298 K

2'OMeTpEt (2i)

(10) pH dependent ¹H chemical shift (in D₂O) of 2'OMe-GpEt_N7 (2g) at 298 K

2'-OMeGpEt_N7 (2g)

(11) pH dependent ¹H chemical shift (in D₂O) of EtpOxeApEt (4a) at 298 K

EtpoxeApEt (4a)

(12) pH dependent ¹H chemical shift (in D₂O) of EtpOxeGpEt (4b) at 298 K

(13) pH dependent ¹H chemical shift (in D₂O) of EtpOxeCpEt (4c) at 298 K

(14) pH dependent ¹H chemical shift (in D₂O) of EtpOxeTpEt (4d) at 298 K

(15) pH dependent ¹H chemical shift (in D₂O) of EtpOxeUpEt (4e) at 298 K

(16) pH dependent ¹H chemical shift (in D₂O) of OxeApEt (4f) at 298 K

(17) pH dependent ¹H chemical shift (in D₂O) of OxeGpEt (4g) at 298 K

(18) pH dependent ¹H chemical shift (in D₂O) of OxeCpEt (4h) at 298 K

(19) pH dependent ¹H chemical shift (in D₂O) of OxeTpEt (4i) at 298 K

(20) pH dependent ¹H chemical shift (in D₂O) of OxeUpEt (4j) at 298 K

(21) pH dependent ¹H chemical shift (in D₂O) of OxeGpEt (4g) at 298 K

S23

(22) pH dependent ¹H chemical shift (in D₂O) of EtpAzeCpEt (5c) at 298 K

EtpAzeCpEt_pH (5c) H5C H6C pН 1.50 2.00 2.32 2.51 2.81 3.12 3.26 3.59 3.79 3.99 4.30 H6C H5C 4.58 ******* 6.2 8.0 7.9 7.8 ppm ppm

(23) pH dependent ¹H chemical shift (in D₂O) of EtpAzeCpEt azetidine protonation (5c) at 298 K

(24) pH dependent ¹H chemical shift (in D₂O) of EtpAzeTpEt (5d) at 298 K

(25) pH dependent ¹H chemical shift (in D₂O) of EtpAzeTpEt azetidine protonation (5d) at 298 K

EtpAzeTpEt_NH_pH (5d)

(26) pH dependent ¹H chemical shift (in D₂O) of EtpAzeUpEt (5e) at 298 K

(27) pH dependent ¹H chemical shift (in D₂O) of EtpAzeUpEt azetidine protonation (5e) at 298 K

(28) pH dependent ¹H chemical shift (in D₂O) of Etp2'-aminoTpEt (6d) at 298 K

рΗ

(29) pH dependent ¹H chemical shift (in D₂O) of Etp2'AminoTpEt amino protonation (6d) at 298 K

Etp(2'NH2)-TpEt_NH2_pH (6d)

(30) pH dependent ¹H chemical shift (in D₂O) of AzeCpEt (5h) at 298 K

5'OH-AzeCpEt_pH (5h)

(31) pH dependent ¹H chemical shift (in D₂O) of AzeCpEt azetidine protonation (5h) at 298 K

5'OH-AzeCpEt_NH_pH (5h)

(32) pH dependent ¹H chemical shift (in D₂O) of AzeTpEt (5i) at 298 K

(33) pH dependent ¹H chemical shift (in D₂O) of AzeTpEt azetidine protonation (5i) at 298 K

5'-OH-AzeTpEt_NH_pH (5i)

(34) pH dependent ¹H chemical shift (in D₂O) of AzeUpEt (5j) at 298 K

5'OH-AzeUpEt_pH (5j)

(35) pH dependent ¹H chemical shift (in D₂O) of AzeTpEt azetidine protonation (5j) at 298 K

5'-OH-AzeUpEt_NH_pH (5j) pН H5U H6U 2.98 3.27 3.96 4.55 5.08 5.46 5.65 5.75 5.83 6.18 6.62 H6U H5U 6.75 7.65 7.60 5.90 ppm ppm

(36) pH dependent ¹H chemical shift (in D₂O) of Etp2'NH₂CpEt azetidine protonation (6c) at 298K

(37) pH dependent ¹H chemical shift (in D₂O) of Etp2'NH₂CpEt (6c) at 298 K

(38) pH dependent ¹H chemical shift (in D₂O) of 2'-NH₂TpEt (6i) at 298 K

5'OH-(2'NH2)-TpEt_pH (6i)

(39) pH dependent ¹H chemical shift (in D₂O) of 2'NH₂TpEt amino protonation (6i) at 298 K

5'-OH-(2'NH2)-TpEt_NH2_pH (6i)

Figure S2. Sigmoidal curves of pH metric titrations of the 2'-OMe analogs (2a - 2i)

Sigmoidal curves of pH metric titrations of the oxetane analogs (4a – 4j)

S43

Sigmoidal curves of pH metric titrations of the deoxy-, ribo- and oxetane G analogs (N7 pK_a)

Sigmoidal curves of pH metric titrations of the (N3/N-azetidine/N-amino) of the azetidine and 2'-amino analogs

Figure S3. Hill plots: oxetane analogs [4a – 4j] (series 4 in Table 1)

Hill plots: 2'-OMe analogs [2a-2i] (series 2 in Table 1)

Hill Plots: azetidine and 2'-amino analogs [5c – 6i] (series 5 of Table 1)

S50

Figure S4. Sigmoidal plot of the pH-dependent ³¹P chemical shifts of 3'and 5'phosphorus of the 3'5'bis-ethyl and 3'mono ethyl phosphates i.e., **5c-j**, **6c-i.** to calculate the protonation pK_a of N-azetidine as well as N-amine.

Figure S5. Hill plot analysis of sigmoidal curves in Figure S4.

Table S1. Theoretical proton affinities (PA), thermodynamic circle's components enthalpies Gibbs free energies (gas phase and solvation), and the theoretical pK_a values of the nucleobases, 2' ribo-, 2'-deoxy-, 2'-amino-, 2'-methoxy-, oxetane and azetidine nucleosides as well as the experimental pK_a values for the corresponding bis-ethylphosphate nucleotides.

Nucleobase/ nucleoside/ nucleotide	dH, BH (gas), a.u.	∆G, BH (gas), a.u.	ΔG _s , BH (aq), kcal/m ol.	dH, B (gas), a.u.	ΔG, B (gas), a.u.	ΔG _s , B (aq), kcal/mol	PA (gas) kcal/ mol	ΔΔG _{gas+} ΔΔG _s kcal/ mol	ΔΔG _s kcal/mol	pKa (calc)	pKa (exp)
Adenine N1	-464.789510	-464.829581	-69.14	-464.420414	-464.459749	-15.68	231.61	285.53	53.46	12.12	3.88
Guanine N1	-539.289880	-539.332412	-29.77	-538.728519	-538.770575	-80.02	352.26	301.54	-51.02	23.85	10.00
Thymine N3	-451.404438	-451.446003	-15.47	-450.826522	-450.868080	-73.80	362.65	304.32	-58.33	25.89	10.47
Cytosine N3	-392.906651	-392.944908	-73.62	-392.529170	-392.566883	-24.82	236.87	286.01	48.80	12.47	4.56
Uracil N3	-412.390199	-412.427943	-19.39	-411.812207	-411.850009	-77.97	362.70	304.08	-58.58	25.71	10.06
Deoxy-A N1	-883.245706	-883.306857	-67.20	-882.866148	-882.928008	-17.28	238.18	287.65	49.92	13.67	3.83
Deoxy-G N1	-957.735180	-957.799469	-31.95	-957.178066	-957.241982	-79.73	349.59	302.05	-47.78	24.22	9.59
Deoxy-C N3	-811.367637	-811.426481	-67.19	-810.973000	-811.032912	-25.98	247.64	288.18	41.21	14.06	4.35
Deoxy-T N3	-869.847982	-869.910817	-15.98	-869.275890	-869.338478	-71.51	358.99	303.62	-55.53	25.37	10.12
Ribo-A N1	-958.095392	-958.158419	-72.48	-957.718794	-957.783107	-19.86	236.32	288.13	52.62	14.02	3.69
Ribo-G N1	-1032.587474	-1032.653389	-34.66	-1032.029893	-1032.095091	-83.07	349.89	301.93	-48.41	24.13	9.27
Ribo-C N3	-886.219071	-886.279279	-70.55	-885.831939	-885.893140	-21.86	242.93	291.00	48.69	16.12	4.24
Ribo-U N3	-905.688515	-905.748859	-18.92	-905.130677	-905.190191	-64.95	350.05	304.54	-46.03	26.05	9.26
Oxe- <u>A</u> N1	-995.918488	-995.982344	-68.21	-995.547148	-995.611323	-15.90	233.02	285.13	52.31	11.82	3.68
Oxe- <u>G</u> N1	-1070.416758	-1070.482548	-30.34	-1069.867982	-1069.932855	-73.05	344.36	302.23	-42.71	24.35	9.74
Oxe- <u>C</u> N3	-924.034273	-924.095727	-70.46	-923.654259	-923.715889	-25.48	238.46	283.33	44.98	10.50	3.54
Oxe- <u>T</u> N3	-982.528975	-982.593174	-15.38	-981.967389	-982.030678	-65.63	352.40	302.72	-50.25	24.72	9.51
3-Etp-Oxe- <u>T</u> N3	-1551.646976	-1551.729075	-21.17	-1551.085009	-1551.166023	-72.69	352.64	301.80	-51.52	24.04	-
5-Etp-Oxe- <u>T</u> N3	-1626.520543	-1626.605358	-18.15	-1625.959836	-1626.043581	-69.16	351.85	301.51	-51.01	23.83	9.36
Oxe- <u>U</u> N3	-943.514404	-943.574828	-19.90	-942.952908	-943.012507	-70.08	352.34	302.68	-50.18	24.69	8.93

Table S1 (continue).

nucleoside	dH, BH (gas), a.u.	ΔG, BH (gas), a.u.	ΔG _s , BH (aq), kcal/m ol.	dH, B (gas), a.u.	ΔG, B (gas), a.u.	ΔG _s , B (aq), kcal/mol	PA (gas) kcal/ mol	ΔΔG _{gas+} ΔΔG _s kcal/ mol	ΔΔG _s kcal/mol	pKa (calc)	pKa (exp)
Aze- <u>A</u> N1	-976.070333	-976.135228	-75.15	-975.699122	-975.764621	-22.17	232.94	285.54	52.98	12.12	-
Naze	-976.094284	-976.156380	-62.33	-975.699122	-975.764621	-22.17	247.97	285.99	40.16	12.45	-
Aze- <u>G</u> N1	-1050.574037	-1050.640265	-33.59	-1050.019017	-1050.084485	-81.10	348.28	301.25	-47.51	23.63	-
Naze	-1050.943030	-1051.011125	-90.87	-1050.574037	-1050.640265	-33.59	231.55	290.00	57.28	15.39	-
Aze- <u>C</u> N3	-904.199795	-904.261293	-62.36	-903.814699	-903.876459	-26.94	241.65	276.91	35.42	5.80	3.24
Naze	-904.185948	-904.248465	-80.68	-903.814699	-903.876459	-26.94	232.96	287.18	53.74	13.32	6.08
Aze- <u>Me-C</u> N3	-943.208385	-943.274726	-65.20	-942.820181	-942.886762	-25.35	243.60	283.30	39.85	10.48	-
Naze	-943.198987	-943.263703	-74.64	-942.820181	-942.886762	-25.35	237.70	285.82	49.29	12.33	-
Aze- <u>T</u> N3	-962.690147	-962.754509	-16.82	-962.124209	-962.187689	-69.14	355.13	303.37	-52.32	25.19	9.60
Naze	-963.052553	-963.118856	-76.23	-962.690147	-962.754509	-16.82	227.41	288.04	59.41	13.96	5.88
3-Etp-Aze (H down) – <u>T</u> N3	-1531.808617	-1531.889260	-17.02	-1531.233404	-1531.315301	-81.17	360.95	296.02	-64.15	19.80	-
Naze	-1532.178989	-1532.260287	-71.63	-1531.808617	-1531.889260	-17.02	232.41	287.43	54.61	13.51	-
3-Etp-Aze (H up) – <u>T</u> N3	-1531.810806	-1531.891363	-16.04	-1531.241960	-1531.323162	-76.10	356.96	296.49	-60.06	20.15	-
Naze	-1532.178991	-1532.260284	-71.66	-1531.810806	-1531.891363	-16.04	231.04	287.12	55.62	13.28	-
5-Etp-Aze (H down) – <u>T</u> N3	-1606.677256	-1606.762644	-20.84	-1606.110853	-1606.195675	-74.69	355.42	301.93	-53.85	24.13	9.34
Naze	-1607.054795	-1607.140208	-69.15	-1606.677256	-1606.762644	-20.84	236.91	285.24	48.31	11.90	5.71
5-Etp-Aze (H up) – <u>T</u> N3	-1606.681254	-1606.766686	-19.29	-1606.115150	-1606.199671	-72.96	355.24	302.14	-53.67	24.29	9.34
Naze	-1607.054795	-1607.140212	-69.17	-1606.681254	-1606.766686	-19.29	234.40	284.27	49.88	11.19	5.71
Aze- <u>U</u> N3	-923.670689	-923.731642	-23.67	-923.101294	-923.161586	-78.83	357.30	302.56	-55.16	24.59	9.11
Naze	-924.037934	-924.099509	-79.57	-923.670689	-923.731642	-23.67	230.45	286.74	55.90	13.00	5.90
Me-O-A N1	-997.084214	-997.150884	-64.18	-996.704971	-996.773393	-13.45	237.98	287.61	50.73	13.64	3.77
Me-O-G N1	-1071.582056	-1071.652937	-26.09	-1071.029785	-1071.098757	-69.79	346.56	304.05	-43.700	25.69	9.73
Me-O-C N3	-925.213389	-925.278075	-62.90	-924.815932	-924.883015	-23.06	249.41	287.74	39.84	13.74	4.26
Me-O-T N3	-983.686985	-983.755475	-12.30	-983.120383	-983.187677	-63.28	355.55	305.32	-50.98	26.62	9.94

	HOMO-1	НОМО	LUMO	LUMO+1
dA ground	, solo	5		-
MO energy (a.u.)	-0.36188 (-0.37104)	-0.30677 (-0.31318)	0.13445 (0.12857)	0.16432 (0.15528)
N1 protonated		2		
MO energy (a.u.)	-0.51492 (-0.40391)	-0.46701 (-0.34055)	-0.04077 (0.09709)	-0.02470 (0.10780)
rA ground				
MO energy (a.u.)	-0.36673 (-0.37117)	-0.31054 (-0.31311)	0.13094 (0.12867)	0.15831 (0.15395)
N1 protonated		2		
MO energy (a.u.)	-0.50948 (-0.40203)	-0.47095 (-0.34122)	-0.04540 (0.09640)	-0.02990 (0.10684)
Oxe- <u>A</u> ground		5 26		
MO energy (a.u.)	-0.37505 (-0.37779)	-0.31733 (-0.31579)	0.12446 (0.12637)	0.15302 (0.15120)
N1 protonated				
MO energy (a.u.)	-0.50492 (-0.40200)	-0.47569 (-0.34433)	-0.04934 (0.09339)	-0.03281 (0.10448)
A-OMe ground		5		
MO energy (a.u.)	-0.36694 (-0.37360)	-0.31100 (-0.31440)	0.13145 (0.12827)	0.16033 (0.15373)
N1 protonated				
MO energy (a.u.)	-0.49051 (-0.39346)	-0.46799 (-0.34271)	-0.03927 (0.09705)	-0.02502 (0.10609)

Table S2: Frontier orbitals of the 2'-ribo, 2'-deoxy, 2'-amino-, 2'-methoxy-, oxetaneand azetidine-nucleosides.

	HOMO-1	НОМО	LUMO	LUMO+1
dG ground		5- 8		
MO energy (a.u.)	-0.38989 (-0.39480)	-0.29724 (-0.30490)	0.14929 (0.14697)	0.16615 (0.15953)
N1 de-protonated	~ 3 000			
MO energy (a.u.)	-0.19183 (-0.34728)	-0.12450 (-0.27368)	0.28839 (0.17518)	0.30231 (0.19678)
N7 protonated	3358:		-	
MO energy (a.u.)	-0.53972 (-0.42191)	-0.45327 (-0.33023)	-0.02054 (0.10587)	0.01621 (0.14245)
rG ground		-5-5-5-5-	-5-5	
MO energy (a.u.)	-0.38620 (-0.39109)	-0.29642 (-0.30469)	0.15006 (0.14631)	0.16435 (0.15848)
N1 de-protonated	5.000	-5-5		-5
MO energy (a.u.)	-0.19171 (-0.34728)	-0.12482 (-0.27369)	0.26965 (0.17091)	0.30011 (0.19732)
N7 protonated		3		
MO energy (a.u.)	-0.54010 (-0.42296)	-0.45414 (-0.33030)	-0.02050 (0.10633)	0.01371 (0.14110)

Oxe- <u>G</u> ground				
MO energy (a.u.)	-0.40174 (-0.39934)	-0.3072 (-0.30664)	0.13806 (0.14420)	0.15633 (0.15576)
N1 de-protonated				
MO energy (a.u.)	-0.20158 (-0.34952)	-0.13476 (-0.27515)	0.29150 (0.17088)	0.30292 (0.19203)
N7 protonated				
MO energy (a.u.)	-0.52403 (-0.41502)	-0.46227 (-0.33231)	-0.02708 (0.10486)	0.00328 (0.13533)
G-OMe ground				
MO energy (a.u.)	-0.38816 (-0.39384)	-0.29701 (-0.30589)	0.14981 (0.14591)	0.16502 (0.15738)
N1 de-protonated				
MO energy (a.u.)	-0.19864 (-0.34759)	-0.13170 (-0.27387)	0.29024 (0.17317)	0.30144 (0.19559)
N7 protonated	W.			
MO energy (a.u.)	-0.52090 (-0.41233)	-0.45162 (-0.33068)	-0.02151 (0.10418)	0.01663 (0.14007)

	HOMO-1	НОМО	LUMO	LUMO+1
dC ground				
MO energy (a.u.)	-0.37048 (-0.37725)	-0.32956 (-0.33362)	0.12346 (0.12421)	0.19234 (0.18366)
N3 protonated				
MO energy (a.u.)	-0.49830 (-0.43517)	-0.05996 (-0.36364)	0.02430 (0.08135)	0.04809 (0.15654)
rC ground				
MO energy (a.u.)	-0.38275 (-0.37966)	-0.34550 (-0.33678)	0.11162 (0.12342)	0.17628 (0.17970)
N3 protonated				
MO energy (a.u.)	-0.52632 (-0.42058)	-0.50246 (-0.36287)	-0.06313 (0.08242)	0.01579 (0.15444)
Oxe- <u>C</u> ground				
MO energy (a.u.)	-0.38477 (-0.38124)	-0.34897 (-0.34529)	0.10518 (0.11624)	0.18029 (0.18002)
N3 protonated			H	
MO energy (a.u.)	-0.52360 (-0.41807)	-0.51178 (-0.37358)	-0.07376 (0.07475)	0.01318 (0.15226)

Aze- <u>C</u> ground				
MO energy (a.u.)	-0.37633 (-0.37336)	-0.34314 (-0.34145)	0.10982 (0.11842)	0.18506 (0.18253)
N3 protonated				
MO energy (a.u.)	-0.51142 (-0.38678)	-0.49082 (-0.36871)	-0.06764 (0.07794)	0.01899 (0.15480)
N _{aze} protonated				
MO energy (a.u.)	-0.48393 (-0.38646)	-0.46122 (-0.35381)	-0.00327 (0.10996)	0.01511 (0.17496)
Amino-C ground				
MO energy (a.u.)	-0.36905 (-0.37220)	-0.32937 (-0.33561)	0.12243 (0.12213)	0.18858 (0.18539)
N3 protonated				
MO energy (a.u.)	-0.50203 (-0.38182)	-0.48148 (-0.36093)	-0.05646 (0.08075)	0.03123 (0.15798)
C-OMe ground				-
MO energy (a.u.)	-0.37430 (-0.38021)	-0.33397 (-0.34002)	0.11740 (0.11890)	0.18970 (0.18326)
N3 protonated				
MO energy (a.u.)	-0.52539 (-0.42067)	-0.49665 (-0.36641)	-0.06098 (0.07875)	0.02663 (0.15596)

	HOMO-1	НОМО	LUMO	LUMO+1
dT ground				
MO energy (a.u.)	-0.42556 (-0.42012)	-0.34313 (-0.34003)	0.11524 (0.11881)	0.18814 (0.18585)
N3 de-protonated			J.S.	- \$
MO energy (a.u.)	-0.17866 (-0.35020)	-0.17533 (-0.30774)	0.28690 (0.15558)	0.29572 (0.21448)
Oxe- <u>T</u> ground				
MO energy (a.u.)	-0.42095 (-0.40921)	-0.35882 (-0.34845)	0.10438 (0.11562)	0.17515 (0.18015)
N3 de-protonated				
MO energy (a.u.)	-0.19077 (-0.35266)	-0.18852 (-0.31482)	0.27845 (0.15281)	0.31035 (0.21049)
Aze- <u>T</u> ground				
MO energy (a.u.)	-0.39742 (-0.38009)	-0.35304 (-0.34471)	0.10881 (0.11753)	0.18036 (0.18296)
N3 de-protonated				
MO energy (a.u.)	-0.18614 (-0.34910)	-0.18375 (-0.31130)	0.28199 (0.15505)	0.30260 (0.21296)
N _{aze} protonated	30.0			
MO energy (a.u.)	-0.53817 (-0.43656)	-0.46713 (-0.35646)	0.00150 (0.11145)	0.00542 (0.17202)

Amino-T ground				
MO energy (a.u.)	-0.39362 (-0.37584)	-0.33942 (-0.33943)	0.12066 (0.12040)	0.18590 (0.18644)
N3 de-protonated				
MO energy (a.u.)	-0.19053 (-0.35210)	-0.17870 (-0.30523)	0.28242 (0.15760)	0.30298 (0.20933)
T-OMe ground				
MO energy (a.u.)	-0.41162 (-0.40227)	-0.34798 (-0.34310)	0.11269 (0.11782)	0.18225 (0.18293)
N3 de-protonated				
MO energy (a.u.)	-0.18638 (-0.35083)	-0.18218 (-0.30998)	0.28435 (0.15507)	0.30334 (0.21168)

	HOMO-1	НОМО	LUMO	LUMO+1
rU ground				
MO energy (a.u.)	-0.42612 (-0.41494)	-0.36243 (-0.34880)	0.10560 (0.11912)	0.16963 (0.18040)
N3 de-protonated				
MO energy (a.u.)	-0.19997 (-0.35654)	-0.18637 (-0.31726)	0.28485 (0.15633)	0.30898 (0.20640)
Oxe- <u>U</u> ground				
MO energy (a.u.)	-0.42338 (-0.40989)	-0.37221 (-0.35969)	0.09897 (0.11252)	0.17251 (0.17894)
N3 de-protonated				
MO energy (a.u.)	-0.19750 (-0.35417)	-0.18807 (-0.32616)	0.27610 (0.14895)	0.30926 (0.20837)
Aze- <u>U</u> ground	***			
MO energy (a.u.)	-0.38314 (-0.37304)	-0.36304 (-0.35562)	0.10712 (0.11568)	0.18036 (0.18137)
N3 de-protonated				
MO energy (a.u.)	-0.18907 (-0.35138)	-0.17969 (-0.32219)	0.28298 (0.15212)	0.28697 (0.21094)
N _{aze} protonated				
MO energy (a.u.)	-0.53454 (-0.43944)	-0.47463 (-0.36651)	0.00124 (0.10949)	0.00511 (0.17178)

Table S3. Calculated acid-base dipole moments differences (Δ dipole moments) of the
nucleobases, 2'-deoxy-, 2'-ribo-, 2'-OMe, oxetane-, and azetidine- nucleosides as well
as the experimental pK_a values of the respective bis-ethylphosphate nucleotides.

Nucleobase/ nucleoside	∆dipole moment (gas phase)	∆dipole moment (in H₂O)	р <i>К_а</i> (exp) [†]
cytosine	-1.3377	-2.3516	4.56
adenine	1.4630	1.9510	3.88
guanine	-1.3479	-2.4596	10.00
thymine	-4.2695	-5.7786	10.47
uracil	-3.5033	-4.8393	10.06
deoxy-C	4.9102	5.3112	4.35 (3c)
deoxy-A	9.4177	11.8638	3.83 (3a)
deoxy-G	-9.5262	-11.5763	9.59 (3b)
deoxy-T	-10.6595	-13.3928	10.12 (3d)
ribo-C	4.6386	5.0668	4.24 (1c)
ribo-A	11.4977	14.3498	3.69 (1a)
ribo-G	-11.0964	-13.4892	9.27 (1b)
ribo-U	-10.1665	-12.6251	9.26 (1e)
oxetane- <u>C</u>	8.0784	8.8815	3.54 (4c)
oxetane-A	12.1316	15.2689	3.68 (4a)
oxetane- <u>G</u>	-7.1178	-9.0084	9.74 (4b)
oxetane-T	-11.1152	-13.8222	9.51 (4d)
oxetane- <u>U</u>	-11.6434	-14.3914	8.93 (4e)
2'-OMe- <u>C</u>	4.6904	4.7199	4.26 (2c)
2'-OMe- <u>A</u>	10.4398	12.4241	3.77 (2a)
2'-OMe- <u>G</u>	-8.9266	-11.2460	9.73 (2b)
2'-OMe- <u>T</u>	-10.2846	-12.8102	9.94 (2d)
azetidine-C	7.2827	7.8803	3.24 (5c)
azetidine-T	-9.9700	-12.4144	9.60 (5d)
azetidine-U	-11.4124	-14.1284	9.11 (5e)

 † Compound numbers (Figure 1) of the 3',5'-bis-ethyl-phosphate nucleotides are shown in parenthesis