Acidity of *ortho*-substituted benzoic acids: an infrared and theoretical study of the intramolecular hydrogen bonds

Stanislav Böhm,^a Pavel Fiedler,^b Jiří Kulhánek^c and Otto Exner^{*·b}

^{*a*} Institute of Organic Chemistry, Prague Institute of Chemical Technology, CZ-16628 Praha 6, Czech Republic

^b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-16610 Praha 6, Czech Republic

^c Department of Organic Chemistry, Faculty of Chemical Technology, University of Pardubice, CZ-53210 Pardubice, Czech Republic

Supplementary information

Solvent	CCl ₄	CCl ₄	CCl ₄	KBr
$c \mod l^{-1}$	1.10 ⁻⁵	1.10 ⁻⁴	1.10 ⁻³	
C(2)-(ЭH			
и (О–Н)	3215	3213	~3213	3237
β (COH) + Bz ₁₄	~1364	1364	1381, 1364, 1215	1384, 1211
у (СОН)			~684sh	~650sh
COOH ma	nomer			
и́О-Н)	3531	3531	3531	3508sh
v(C=O)	1696	1696	1696	~1681sh
γ(C=O)	644	643	643	~640sh
<i>β</i> (COH)	1414	1415	1416	1406
$v(C-O) + Bz_{13}$	1185	1185	1184	1191
COOH a	limer			
<i>и</i> (О–Н)	_	3200-2400	3200-2400	3300-2200
𝒴(C=O) out-of-phase	_	1662	1662	1659
γ(C=O)	_	661	659	660

 Table S1
 Experimental vibrational frequencies of 2-hydroxybenzoic a 1 (cm⁻¹)

β (COH) + ν (C–O)	_	1441, 1298	1441, 1299	1445, 1296
γ(COH)	-		893	893
monomer : dimer	M>>D	5 : 1	1 :1	M< <d< td=""></d<>

 Table S2
 Experimental vibrational frequencies of tetrabutylammonium 2-hydroxybenzoate 2 (cm⁻¹)

Solvent	CCl ₄	CCl ₄	CHCl ₃	CHCl ₃
$c \mod l^{-1}$	3.10 ⁻⁴	3.10 ⁻³	3.10 ⁻³	~5.10 ⁻¹
и (О–Н)	~3333, 3195	3346, 3195	~3341, 3191	3355, 3205
$v_{as}(CO_2^-)+Bz_{8b}+Bz_{8a}$	1633	1634, 1589	1631, 1588	1631, 1588
$v_{s}(CO_{2}^{-})+\delta_{s}(CH_{3})$	~1407sh, 1382,	~1410sh, 1382,	~1409sh, 1383,	~1409sh, 1384
	~1360sh	~1360sh	~1360sh	
$\beta_{s}(CO_{2}^{-})+\beta_{as}(CH_{2})$		882	886sh, 880	881

 Table S3
 Experimental vibrational frequencies of 2-aminobenzoic acid 3 (cm⁻¹)

Solvent	CCl ₄	CCl ₄	CCl ₄	CCl ₄	KBr	Deuterated
$c \mod l^{-1}$	1.10 ⁻⁵	1.10 ⁻⁴	1.10 ⁻²	saturated		Nujol
	$C(2)-NH_2$					
$v_{as}(NH_2)$	3510	3511	3512	3512	3473	2532
$v_{\rm s}({\rm NH_2})$	3377	3378	3387	3387	3374	2460
$V_{\rm as} - V_{\rm s}$	133	133	125	125	99	72
$\beta_{\rm as}({ m NH_2})$		1092	1092	1093	1114	880sh
		~1058	1060	1060	1060	
$\beta_{s}(NH_2)+Bz_{8b}+Bz_{8a}$	1617	1618, 1596	1617, 1590,	1617, 1590,	1618, 1588,	, 1615, 1588,
			1560	1560	1564	1556, ~11903

	COOH monomer					
и (О–Н)	3544	3544	3544	~3545	_	2603
<i>v</i> (С=О)	1709	1709	1707	1707	_	_
γ(C=O)	641	641	641	641	_	_
<i>β</i> (COH)	1335, 1354	1335, 1353	~1335	~1335	_	_
v(C-O)	1181	1181	1181	1181		

COOH dimer

и (О–Н)	3300-2300	3300-2300	3400-2300	3400-2300	3400-2300	2200-2000
<i>v</i> (C=O) out-of-phase	_	1671	1671	1671	1674	1668, 1650
γ(C=O)	_	658	658	658	660	642
β (COH) + ν (C–O)	~1415, 1380	1418, 1300	1418, 1300	1418, 1300	1420, 1302	1034, 1044
						1286, 1271
ү(СОН)	_	912	916	916	918	~741
monomer : dimer	M>>D	2.5 : 1	1:9	1:13	D	M< <d< td=""></d<>

Table S4Experimental vibrational frequencies of tetrabutylammonium 2-aminobenzoate 4(cm⁻¹)

Solvent c mol l ⁻¹	CCl ₄ 3.10 ⁻⁴	CCl ₄ 3.10 ⁻³	CHCl ₃ 3.10 ⁻³
$v_{\rm as}({\rm NH_2})$	3464	3461	3458
$v_{s}(NH_{2})$	~3380, 3219	3363, 3228	3262
$V_{\rm as} - V_{\rm s}$	245	233	196
$\beta_{s}(\mathrm{NH}_{2})$		1542sh, 1530	1531
$v_{as}(CO_2^-)+Bz_{8b}+Bz_{8a}$	1614	1614, 1582	1612, 1581
$v_{s}(CO_{2}^{-})+\delta_{s}(CH_{3})$	1381, 1358	1380, 1360	1410, 1382sh, 1360
$\beta_{s}(CO_{2}^{-})+\beta_{as}(CH_{2})$	~893	881	880, 889sh

Solvent	CCl ₄	CCl ₄	CCl ₄	KBr
$c \mod l^{-1}$	5.10 ⁻⁶	2.10 ⁻⁵	saturated	
	SO_2NH_2			
$v_{as}(NH_2)$	3438-6	3437	3436	3351
$\nu_{\rm s}({\rm NH_2})$	3319-7	3318	3318	3253
$V_{\rm as} - V_{\rm s}$	~119	119	118	98
$\beta_{s}(NH_{2})$				1594
NH ₂ intermol. H-bond?	~3399-7	3398	3397	
$v_{\rm as}({ m SO}_2)$		1371, 1358	1371, 1355	1338, 1326
$v_{\rm s}({ m SO}_2)$			(1179, 1162sh)	1161
v(S–N)				909
$\beta_{s}(SO_{2})$				595, 588sh
$\gamma_s(SO_2)$				544
CO	OH monome	er		
и (О–Н)	~3538	3529	3520	
<i>v</i> (C=O)		~1755, 1743	1756, 1742	
С	OOH dimer			
и (О–Н)				3300-2400
v(C=O)		1709	~1712	1711
γ(C=O)				651
β (COH) + ν (C–O)				1395, 1250
γ(COH)				863
monomer : dimer	М	M>>D	M>>D	D

 Table S5
 Experimental vibrational frequencies of 2-sulphonamidobenzoic acid 7 (in cm⁻¹)

Solvent	CCl ₄	CCl ₄	CHCl ₃
$c \mod 1^{-1}$	1.10 ⁻⁴	1.10-3	3.10 ⁻³
<i>v</i> (NH ₂)	3384, ~3183	3389, 3308, 3173	3378, ~3200
$V_{\rm as} - V_{\rm s}$	201	216	178
$\beta_{s}(NH_{2})$		1524	1531, 1525
$v_{as}(CO_2^{-})+Bz_{8b}+Bz_{8a}$		1607, ~1589sh	1607, ~1589sh
			~1565sh
$v_{s}(CO_{2}^{-})+\delta_{s}(CH_{3})$	1381, 1357	1380, 1360	1381sh, 1362
$\beta_{s}(CO_{2}^{-})+\beta_{as}(CH_{2})$		890, 882	
$v_{\rm as}({ m SO}_2)$	1343	1329	1338
$v_{\rm s}({ m SO}_2)$	1165	1158	1163
$\beta_{\rm s}({ m SO}_2)$	586	586	586
$\gamma_{s}(SO_{2})$		541	541
ν (S–N)			831

Table S6Experimental vibrational frequencies of tetrabutylammonium 2-sulphonamidobenzoate8 (cm⁻¹)

Table S7 Some calculated geometric parameters and vibrational frequencies of *ortho* substituted benzoic acids

Structure and		Bond ler	ngths	Bond a	angles	V(O	-H)	и (N–H)
conformation		C1–C(O)	C1–C2	C-C1-C2	C1-C2-X	C	m ⁻¹	cm ⁻¹
2-OH 1	1a	1.464	1.417	118.9	123.0	3768	3474	
1	lb	1.476	1.415	124.8	124.8	3768	3691	
1	lc	1.505	1.405	125.6	118.4	3672	3839	
1	1d	1.490	1.411	126.0	120.3	3758	3883	
1	le	1.485	1.412	121.5	119.8	3778	3819	
2-OH Ph-anion ^a 2	2a	1.491	1.443	120.3	122.0	2460		

	2c	1.457	1.469	124.5	125.9	2340			
	2d	1.452	1.471	120.7	125.6	3755			
2-OH Ca-anion ^a	2 b	1.529	1.418	120.3	120.6	3789			
	2e	1.547	1.403	123.0	118.2	3839			
2-NH ₂	3a	1.466	1.425	120.2	122.4	3776		3707	3549
	3b	1.476	1.423	125.6	124.0	3767		3717	3597
	3c	1.511	1.409	124.7	119.8	3428		3587	3497
$2-NH_2$ anion	4a	1.550	1.421	123.3	120.6			3220	3613
2-COOH	5a	1.491	1.407	120.6	124.0	3767	3757		
		1.501							
	5b	1.496	1.407	124.5	124.5	3761	3760		
	5c	1.535	1.422	130-0	124.8	3363	3759		
		1.488							
	5d	1.494	1.406	120.8	121.4	3762	3757		
		1.498							
2-COOH anion	6a	1.549	1.422	128.9	128.9	1727			
	6b	1.503	1.400	120.5	121.8	3775			
		1.546							
$2-SO_2NH_2$	7a	1.494	1.408	123.3	123.6	3756		3610	3476
	7b	1.498	1.407	126.2	123.5	3752		3624	3510
	7c	1.517	1.410	127.8	124.0	3440		3633	3514
$2\text{-}SO_2NH_2$ anion	8 a	1.557	1.408	128.1	124.0			3544	2901

^{*a*} Phenolate and carboxylate anion, respectively.

Table S8 Calculated energies of substituted benzoic acids and of some reference compounds, partly in fixed conformation

Compound	Geometry constraints	<i>E</i> (DFT) a. u.
1f	$\phi_1 90^\circ$	-496.1831182
2f	<i>φ</i> ₁ 90°	-495.6335427
3g	<i>\phi</i> ₁ 90°	-476.3137138

4c	$\phi_1 90^\circ$	-475.7677017
5f	<i>φ</i> ₁ 90°	-609.5698253
6c	<i>φ</i> ₁ 90°	-609.0274486
7d	<i>φ</i> ₁ 90°	-1024.9505363
8b	<i>φ</i> ₁ 90°	-1024.4259653
4-hydroxybenzoic acid	<i>φ</i> ₁ 90°	-496.1848894
4-hydroxybenzoate anion	<i>φ</i> ₁ 90°	-495.6329012
4-aminobenzoic acid	<i>φ</i> ₁ 90°	-476.3146925
4-aminobenzoate anion	<i>φ</i> ₁ 90°	-475.7616263
1,4-benzenedicarboxylic acid	<i>φ</i> ₁ 90°	-609.5732549
1,4-benzenedicarboxylic acid	<i>φ</i> ₁ 28°, <i>φ</i> ₂ 220°	-609.5778044
1,4-benzenedicarboxylic acid monoanion	<i>φ</i> ₁ 90°	-609.0296084
4-sulphonamidobenzoic acid	no constraints	-1024.9618549
4-sulphonamidobenzoic acid	<i>φ</i> ₁ 36°, <i>φ</i> ₂ 48°	-1024.9569097
4-sulphonamidobenzoic acid	<i>φ</i> ₁ 90°	-1024.9518985
4-sulphonamidobenzoate anion	no constraints	-1024.4281035
4-sulphonamidobenzoate anion	<i>φ</i> ₁ 39°, <i>φ</i> ₂ 57°	-1024.4199694
4-sulphonamidobenzoate anion	<i>φ</i> ₁ 90°	-1024.4227250
benzenesulphonamide		-836.3273776