SUPPORTING INFORMATION

Detection of Terminal Mismatches on DNA Duplexes with Fluorescent Oligonucleotides
Ulysse Asseline*, Marcel Chassignol, Yves Aubert and Victoria Roig
Centre de Biophysique Moléculaire, CNRS UPR 4301, affiliated with the University of Orléans and with INSERM.
Rue Charles Sadron, 45071 Orléans Cedex 02, France
asseline@cnrs-orleans.fr

Influence of the presence of mismatches at the penultimate or last two positions of the duplex

Fig. 9. Fluorescence duplex/fluorescence free probe. Concentrations were $[C]=1 \mu \mathrm{M}$ (each strand) in a 5 mM sodium cacodylate buffer, $\mathrm{pH}=6$, containing 50 mM NaCl .45 min hybridization at room temperature.

As previously observed at $6^{\circ} \mathrm{C}$ (Figure 5), the discrimination factor between the perfectly matched duplexes (red bars) and those involving terminal mismatches (green bars) on the same lines was also superior to 2 at room temperature $\left(25^{\circ} \mathrm{C}\right)$. The values observed for the perfectly matched duplexes (red bars) were also inferior to those obtained for the duplexes involving a perfectly matched terminal base-pair and a penultimate mismatched one (blue bars on the same histograms) and also for the duplexes involving two terminal mismatched base-pairs (white bars). Among the combinations studied, the greatest fluorescence increases were observed when a CT mismatch was present at the penultimate position of the duplexes. Another observation was that the hybridization of the four ODN-TO' probes (each column of histograms) with each of the corresponding complementary target sequences gave, in all cases, the lowest fluorescence ratio for the perfect duplexes.

Variation of the nucleic base V on the target sequences adjacent to the terminal base-pair of the duplex (on the side of TO' attachment):

Fig. 10. Fluorescence duplex/fluorescence free probe. Concentrations were $[C]=1 \mu \mathrm{M}$ (each strand) in a 5 mM sodium cacodylate buffer, $\mathrm{pH}=7$, containing 50 mM NaCl .30 min hybridization at room temperature.

Sixteen possibilities were studied. A comparison of the results showed that the perfect duplexes formed with the target studied above $\mathbf{V}=\mathrm{G}$ (red bars) and the perfect duplexes formed with the other three targets $\mathbf{V}=\mathrm{C}, \mathrm{A}$ or T (yellow bars) could be discriminated from the corresponding mismatched ones [green bars $(\mathbf{V}=\mathbf{G})$ and white bars $(\mathbf{V}=\mathrm{C}, \mathrm{A}$ or T$)$]. The fluorescence ratio for the duplexes involving terminal mismatches were higher than those corresponding to the perfect duplexes. The discrimination factor was at least equal or superior to 2 except when \mathbf{X} and \mathbf{V} were cytosines leading to a reduced value (between 1.7 and 1.4).

