Supporting Information for Highly Enantioselective Direct Aldol Reaction Catalyzed By Cinchona Derived Primary Amines

Bao-Lei Zheng, Quan-Zhong Liu,* Chuan-Sheng Guo, Xue-Lian Wang and Long He

Key Laboratory of Chemistry Application and Pollution Controlment of College of Chemistry and Chemical Engineering, China West Normal University, Nanchong,637002, China

quanzhongliu@sohu.com

Table of Contents

General information	S2
General procedure for the Aldol reaction	S2
Optimization of Conditions	S2-S4
Spectra data for all the Aldol products 5a-p	
NMR spectra for compounds 5a-p	
HPLC spectra for compounds 5a-p	S16-S31

Experimental Section

General Information: Unless otherwise noted, material were purchased from commercial suppliers and used without further purification. cyclohexanone and cyclopentanone were freshly distilled. Hexane and ethyl acetate for flash column chromatography were distilled before use. Flash column chromatography was performed using 200-300 mesh silica gel. ¹HNMR spectra were recorded on a Brucker-300 (300 MHz) spectrophotometer. Chemical shifts are reported in ppm from the solvent resonance as the internal standard (CDCl₃: 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = single, d = doublet, t =triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz) and integration. Chiral HPLC was performed on Waters 2996 series with chiral columns (Chirapak AD-H, AS-H, OD-H columns, Daicel Chemical Ind., Ltd.). Catalysts **1** and **2** were prepared according to literature procedure¹

General procedure for the Aldol reaction

To a mixture of catalyst **1** (0.025 mmol) and TfOH (0.0375 mmol) was added Cyclohexanone (1 mL), cyclopentanone (1 mL), tetrahydro-4H-puran-4-one (1.25 mmol) or tetrahydrothiopuran-4-one (0.50 mmol). The reaction mixture was stirred for 5 min in a closed system and then aldehyde (0.25 mmol) was added. The reaction mixture was stirred for 9-166 h (monitored by TLC). the reaction was quenched with saturated ammonium chloride solution (10 mL) and extracted with ethyl acetate (3×15 mL). The combined organic layer was dried (Na₂SO₄) and concentrated in vacuo. The crude product was purified by flash column chromatography to give pure aldol adduct. Diastereoselectivity was determined by ¹H NMR analysis of the crude aldol product.

Optimization of Conditions: Acid and Acid loading screening:

O ₂ N 0.25mm 3a	O H + O 1.0mL 4a	10 mol% acid neat 25°C				
entry	acid	Time(h)	Acid(%)	Yield(%) ^a	Ee(%)	dr
1	TFA	19	15	54.8	95	6.8:1
2	No acid	39	0	74	87	1.6:1
3	TfOH	18	5	99	98	6.3:1
4	TfOH	12	10	97	98	6.9:1
5	TfOH	9	15	99	99	9.2:1
6	TfOH	15	20	77	98	9.0:1
7 ^b	TfOH	18	15	76	-94	10:1

^a isolated yields.^b 10% **2** used as catalyst

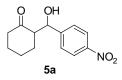
¹ Brunner, H.; Biigler, J.; Nuber, B. Tetrahedron: Asymmetry, **1995**, *6*, 1699-1702.

Solvent screening:

O ₂ N 0.25mmol 3a	^O H + O 0.50mL 4a	10 mol% 1 15 mol% TfOH solvent 1mL 25°C	5a OH	NO ₂	
				T (0.0)	
entry	solvent	Time(h)	Yield(%) ^a	Ee(%)	dr
1	neat	9	99	99	9.2:1
2	THF	17	98	99	9.8:1
3	DMSO	45	77	97	3.5:1
4	DMF	44	74	97	5.0:1
5	Toluene	23	94	98	8.6:1
6	H_2O	4	97	97	4.8:1
7	CHCl ₃	22	84	98	7.0:1
8	EtOH	20	79	98	6.6:1
9	CH_2Cl_2	12	82	98	7.5:1
10	Et ₂ O	19	98	98	8.1:1
11 ^b	DMF-H ₂ O	24	94	97	4.1:1
12 ^c	neat	96	11	91	2.4:1
13 ^d	neat	38	90	98	5.0:1
14^{e}	neat	18	86	92	2.0:1
15 ^f	neat	18	73	86	1.7:1

^a isolated yields. ^b volume ratio 1:1. ^c the reaction was carried out at -16°C. ^d the reaction was carried out at 60°C.

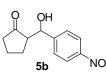
Full list of substrates


° R ^{⊥⊥} H ⁺	0 X 10 mol% 15 mol% 25%	TfOH	O OH E R X			
3	4		5			
entry	R	Х	Time(h)	Yield(%) ^a	Ee(%)	dr
1	$4-NO_2C_6H_4$	CH_2	9	99	99	9.2:1
2	$4-NO_2C_6H_4$	^c	24	70	86	5.0:1
3	$4-NO_2C_6H_4$	0	87	92	91	5.4:1
4	$4-NO_2C_6H_4$	S	117	38	94	3.0:1
5	$3-NO_2C_6H_4$	CH_2	34	74	97	3.2:1
6	$2-NO_2C_6H_4$	CH_2	35	98	97	7.5:1
7	$2-NO_2C_6H_4$	^c	20	99	84	2.4:1
8	$2-NO_2C_6H_4$	0	140	44	87	3.2:1
9	$4-CF_3C_6H_4$	CH_2	71	99	98	2.3:1
10	$4-FC_6H_4$	CH_2	90	58	94	1.7:1
11	C_6H_5	CH_2	100	31	86	1.0:1
12	2-furanyl	CH_2	47	39	94	1:2.5
13	1-naphthyl	CH ₂	166	55	93	4.9:1

14 ^b	$4-ClC_6H_4$	CH_2	69	70	91	4.1:1
15 ^b	$4-CH_3OC_6H_4$	CH_2	100	19	89	3.7:1
16 ^d	$4-NO_2C_6H_4$		52	25	56	

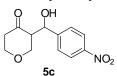
^a isolated yields. ^b 0.5 mL H₂O was added. ^c cyclopentanone used ^d neat acetone used instead of cylic ketone in the presence of 10% of catalyst and 15% of triflic acid.^e

Spectra data for all the Aldol products


2-(Hydroxy-(4-nitrophenyl)methyl)cyclohexan-1-one 5a: [5]

Reaction time: 9 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 5:1) to give pure aldol adduct. yield: 99%; ee: 99%; *Anti/Syn*= 9.2:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 8.19-8.23 (m, 2H), 7.48-7.53 (m, 2H), 4.89 (dd, *J* =

8.4, 3.1 Hz, 1H), 4.08 (d, J = 3.1 Hz, 1H), 2.46-2.59 (m, 2H), 2.35-2.40 (m, 1H), 2.08-2.14 (m, 1H), 1.81-1.85 (m, 1H), 1.52-1.69 (m, 3H), 1.34-1.43 (m, 1H). HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, 20°C) t_R (major)= 55.6 min and t_R (minor)= 75.9 min.

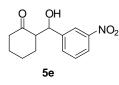

2-(Hydroxy-(4-nitrophenyl)methyl)cyclopentan-1-one 5b^[3]

Reaction time: 24 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 4:1) to give pure aldol adduct. yield: 70%; 86%ee; *Anti/Syn*= 5.0:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 8.19-8.23 (m, 2H), 7.50-7.55 (m, 2H), 4.84 (d, *J* =

9.2 Hz, 1H), 4.76 (s, 1H), 2.27-2.45 (m, 3H), 1.54-2.02 (m, 4H). HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 95/5, 1.0 mL/min, λ =254 nm, 20°C) t_R (major)= 97.2 min and t_R (minor)= 101.5 min.

3-((1-hydroxy-1-(4-nitrophenyl))methyl)-tetrahydropyran-4-one 5c^[3]

Reaction time: 87 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 3:1) to give pure aldol adduct. yield: 92%; 91%ee; *Anti/Syn*= 5.4:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 8.21-8.26 (m, 2H), 7.50-7.53 (m, 2H), 4.99 (d,


J = 8.0 Hz, 1H), 4.19-4.25(m, 1H), 3.70-3.85 (m, 3H), 3.42-3.49 (m, 1H), 2.88-2.94 (m, 1H), 2.64-2.70 (m, 1H), 2.50-2.57 (m, 1H). HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, 20°C) t_R (major)= 22.7 min and t_R (minor)= 26.8 min

3-((1-hydroxy-1-(4-nitrophenyl))methyl)-tetrahydrothiopyran-4-one 5d^[3]

Reaction time: 117 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 4:1) to give pure aldol adduct. yield: 38%; 94%ee; *Anti/Syn*= 3.0:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 8.24 (dd, J = 8.7, 1.8 Hz, 2H), 7.51-7.56 (dd, J = 8.7, 1.8 Hz, 2H), 5.05 (d, J = 8.0 Hz, 1H), 3.61 (br, 1H), 2.94-3.09 (m, 3H), 2.75-2.89 (m, 2H), 2.64-2.72 (m, 1H), 2.48-2.55 (m, 1H). HPLC analysis Chiralcel

AD-H (Hexane/ i-PrOH = 95/5, 1.0 mL/min, λ = 254 nm, 20°C) t_R (major)= 44.3 min and t_R (minor)= 81.5 min.

2-(Hydroxy-(3-nitrophenyl)methyl)cyclohexan-1-one 5e^[5]

Reaction time: 34 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 5:1) to give pure aldol adduct. yield: 74%; 97%ee; Anti/Syn= 3.2:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 8.21 (m, 1H), 8.14-8.18 (m, 1H), 7.67(d, J = 7.7 Hz, 1H), 7.53 (t, J = 7.9 Hz, 1H), 4.89 (dd, J = 8.5, 3.0 Hz, 1H),

4.12 (d, J = 3.0 Hz, 1H), 2.36-2.62 (m, 3H), 2.10-2.11 (m, 1H), 1.80-1.82 (m, 1H), 1.55-1.63 (m, 3H), 1.23-1.25 (m, 1H), HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, 20°C) t_R (minor)= 39.1 min and t_R (major)= 51.5 min.

2-(Hydroxy-(2-nitrophenyl)methyl)cyclohexan-1-one 5f^[2]

Reaction time: 35 h. The crude product was purified by flash column NO_2 OH chromatography (hexane/ ethyl acetate= 7:1) to give pure aldol adduct. yield: 98%; 97%ee; *Anti/Syn*= 7.5:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 5f 7.84 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H), 5.44 (d, J = 7.1 Hz, 1H), 3.80 (br, 1H), 2.71-2.79 (m, 1H), 2.28-2.47 (m, 2H), 2.06-2.12 (m, 1H), 1.82-1.86 (m, 1H), 1.52-1.79 (m, 4H). HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 90/10, 1.0 mL/min, λ = 254 nm, 20°C) t_R $(\text{minor}) = 45.6 \text{ min and } t_R \text{ (major}) = 50.4 \text{ min.}$

2-(Hydroxy-(2-nitrophenyl)methyl)cyclopentan-1-one 5g

Reaction time: 20 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 7:1) to give pure aldol adduct. yield: 99%; 84%ee; *Anti/Syn*= 2.4:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 7.98 (dd, J = 8.2, 1.3 Hz, 1H), 7.88 (dd, J = 7.9, 1.4 Hz, 1H), 7.62-7.68

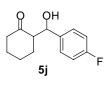
(m, 1H), 7.40-7.46 (m, 1H), 5.91 (d, J = 3.0 Hz, 1H), 2.70-2.74 (m, 1H), 2.34-2.37 (m, 2H), 2.16-2.19 (m, 1H), 2.01-2.07 (m, 2H), 1.71-1.75 (m, 2H). HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 95/5, 1.0 mL/min, λ =254 nm, 20°C) t_R (minor)= 35.5 min and t_R (major)= 38.5 min.

3-((1-hydroxy-1-(2-nitrophenyl))methyl)-tetrahydropyran-4-one 5h^[3]

5i

`CF₃

Reaction time: 140 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 3:1) to give pure aldol adduct. yield: 46%; 87%ee; Anti/Syn= 3.2:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 7.92 (dd, J = 8.2, 1.1 Hz, 1H), 7.78-7.83(m, 1H), 7.65-7.70 (m, 1H), 7.44-7.49 (m, 1H), 5.48 (d, J = 6.6 Hz, 1H), 4.22-4.28 (m, 1H), 3.89-3.95 (m, 2H),


3.71-3.85 (m, 2H), 3.04-3.08 (m, 1H), 2.65-2.68 (m, 1H), 2.47-2.54 (m, 1H). HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 95/5, 1.0 mL/min, λ =254 nm, 20°C) t_R (minor)= 35.1 min and t_R (major)= 37.1 min.

2-(Hydroxy-(4-(trifluoromethyl)phenyl)methyl)cvclohexan-1-one 5i^[2]

Reaction time: 71 h; The crude product was purified by flash column

chromatography (hexane/ ethyl acetate= 15:1) to give pure aldol adduct. yield: 99%; 98%ee; Anti/Syn= 2.3:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 7.61 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.1 Hz, 2H), 4.84 (d, J = 8.6 Hz, 1H), 4.05 (s, 1H), 2.57-2.64 (m, 1H), 2.46-2.51 (m, 1H), 2.35-2.39 (m, 1H), 2.07-2.14 (m, 1H), 1.79-1.83 (m, 1H), 1.48-1.73 (m, 3H), 1.25-1.39 (m, 1H). HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 90/10, 0.5 mL/min, $\lambda = 220$ nm, 20°C) t_R (major)= 22.6 min and t_R (minor)= 28.3 min.

2-(Hydroxy-(4-fluorophenyl)methyl)cyclohexan-1-one 5j^[2]

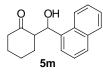
Reaction time: 90 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 15:1) to give pure aldol adduct. yield: 58%; 94%ee; Anti/Syn= 1.7:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 7.26-7.32 (m, 2H), 7.00-7.07 (m, 2H), 4.77 (d, J = 8.8Hz, 1H), 3.99 (br, 1H), 2.45-2.56 (m, 2H), 2.34-2.48 (m, 1H), 2.06-2.11 (m, 1H), 1.77-1.82 (m, 1H), 1.51-1.68 (m, 3H), 1.25-1.30 (m, 1H). HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 95/5, 1.0 mL/min, λ = 220 nm, 20°C) t_R

2-(Hvdroxy(phenyl)methyl)cyclohexan-1-one 5k^[2]

(major)= 27.9 min and t_R (minor)= 30.6 min.

Reaction time: 100 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 10:1) to give pure aldol adduct. yield: 31%; 86%ee; *Anti/Syn*= 1.0:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 7.22-7.37 (m, 5H), 4.79 (d, J = 8.8 Hz, 1H), 3.97 (br, 1H), 2.57-2.64 (m, 1H), 2.05-2.12 (m, 1H), 1.51-1.70 (m, 4H), 1.25-1.32 (m, 1H), HPLC

analysis Chiralcel OD-H (Hexane/ i-PrOH = 90/10, 0.5 mL/min, λ = 220 nm, 20°C) t_R (minor)= 16.8 min and t_R (major)= 23.9 min.

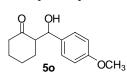

2-(Hydroxy-(furan-2-yl)propyl)cyclohexan-1-one 5l^[2]

Reaction time: 47 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 5:1) to give pure aldol adduct. yield: 39%; 94%ee; *Anti/Syn*= 1:2.5, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 7.34 (s, 1H), 6.34 (s, 1H), 6.23 (s, 1H), 5.28 (s, 1H), 3.03 (s, 1H), 2.80-2.84 (m, 1H), 2.31-2.48 (m, 2H), 2.08-2.09 (m, 1H), 1.67-1.98 (m,

5H). HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 95/5, 0.5 mL/min, λ = 220 nm, 20° C) t_R (major)= 33.1 min and t_R (minor)= 36.3 min.

2-(Hydroxy(naphthalen-1-yl)methyl)cyclohexan-1-one 5m^[2]

Reaction time: 166 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 15:1) to give pure aldol adduct. yield: 55%; 93%ee; Anti/Syn= 4.9:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 8.24-8.27 (m, 1H), 7.84-7.89 (m, 1H), 7.81 (d, J = 8.1


Hz, 1H), 7.57 (d, J = 6.3 Hz, 1H), 7.45-7.53 (m, 3H), 5.58 (dd, J = 8.7, 2.9 Hz, 1H), 4.15 (d, J = 2.9 Hz, 1H), 2.95-3.04 (m, 1H), 2.49-2.54 (m, 1H), 2.35-2.45 (m, 1H), 2.05-2.12 (m, 1H), 1.61-1.74 (m, 2H), 1.33-1.51 (m, 3H), HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, 20°C) t_R(major)= 25.6 min and t_R (minor) = 31.2 min. ²

2-(Hydroxy-(4-chlorophenyl)methyl)cyclohexan-1-one 5n^[2]

5n

Reaction time: 69 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 10:1) to give pure aldol adduct. yield: 70%; 91%ee; Anti/Syn= 4.1:1, ¹HNMR (300 MHz, CDCl₃) δ (ppm) 7.31-7.33 (m, 2H), 7.24-7.27 (m, 2H), 4.76 (dd, J =8.7, 2.8 Hz, 1H), 3.98 (d, J = 2.8 Hz, 1H), 2.45-2.58 (m, 2H), 2.30-2.40 (m, 1H), 2.06-2.13 (m, 1H), 1.77-1.83 (m, 1H), 1.51-1.69 (m, 3H), 1.26-1.36 (m, 1H). HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 90/10, 0.5 mL/min, λ = 220 nm, 20°C) t_R (major)= 25.9 min and t_R (minor)= 30.0 min.

2-(Hydroxy-(4-methoxyphenyl)methyl)cyclohexan-1-one 50^[2]

Reaction time: 100 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 10:1) to give pure aldol adduct. yield: 19%; 89%ee; Anti/Syn= 3.7:1, ¹HNMR (300 MHz, CDCl₃) δ(ppm) 7.21-7.26 (m, 2H), 6.85-6.91 (m, 2H), 4.74

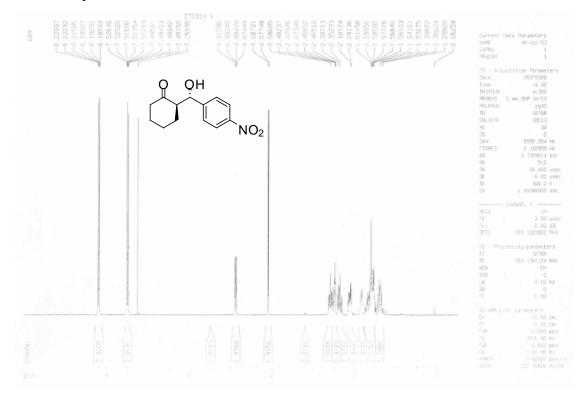
(dd, J = 8.7, 2.0 Hz, 1H), 3.91 (d, J = 2.0 Hz, 1H), 3.80 (s, 3H), 2.57-2.60 (m, 1H),2.44-2.50 (m, 1H), 2.34-2.41 (m, 1H), 2.05-2.11 (m, 1H), 1.76-1.81 (m, 1H), 1.52-1.69 (m, 3H), 1.23-1.33 (m, 1H). HPLC analysis Chiralcel AD-H (Hexane/ i-PrOH = 95/5, $0.5 \text{ mL/min}, \lambda = 220 \text{ nm}, 20^{\circ}\text{C}$ t_R (major)= 78.1 min and t_R (minor)= 81.8 min.

2-(Hydroxy-(4-nitrophenyl)methyl)butan-2-one 5p [4]

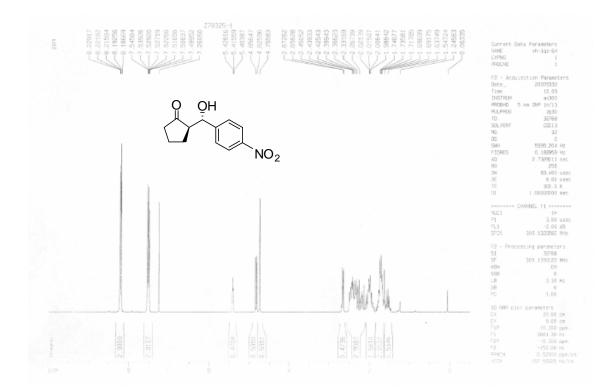
Reaction time: 52 h; The crude product was purified by flash column chromatography (hexane/ ethyl acetate= 3:1) to give pure aldol adduct. yield: 25%; 56%ee; ¹HNMR (300 MHz, CDCl₃) δ (ppm) 8.21 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 8.7 Hz, 2H), 5.26 (dd, J = 7.3,

4.9 Hz, 1H), 3.61 (br, 1H), 2.84-2.86 (m, 2H), 2.22 (s, 3H). HPLC analysis Chiralcel AS-H (Hexane/ i-PrOH = 70/30, 1.0 mL/min, λ = 254 nm, 20°C) t_R (minor)= 22.2 min and t_R (major)= 27.4 min.

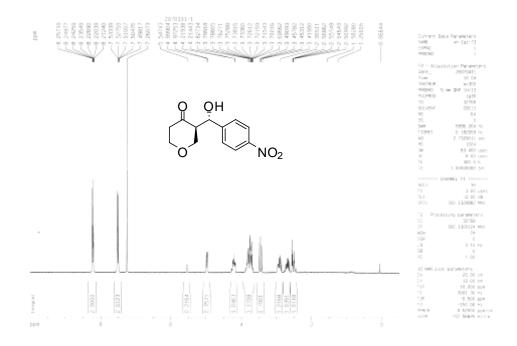
² Wu, Y.-Y; Zhang, Y.-Z; Yu, M.-L; Zhao, G; Wang, S.-W. Org. Lett. 2006, 8, 4417-4420.

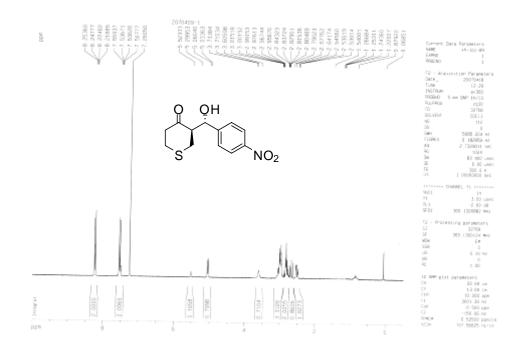

³ Chen, J.-R.; Li, X.-Y.; Xing, X.-N.; Xiao, W.-J. J. Org. Chem. 2006, 71, 8198-8202

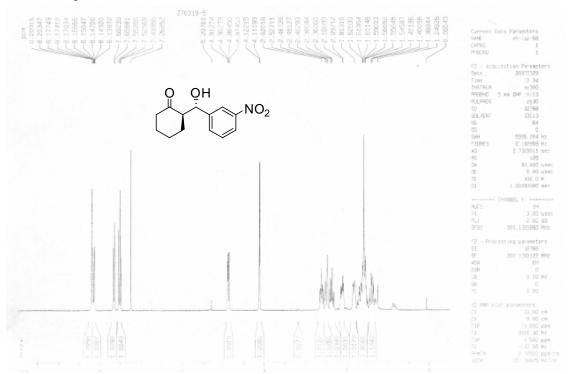
⁴ Tang, Z.; Yang, Z.-H.; Chen, X.-H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. J. Am. Chem. Soc.; 2005; 127; 9285-9289

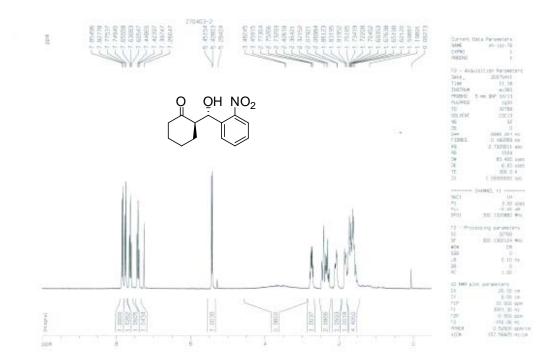

⁵ Chen, J.-R.; Lu, H.-H.; Li, X.-Y.; Cheng, L.; Wan, J.; Xiao, W.-J. Org. Lett. 2005, 7, 4543-4545.

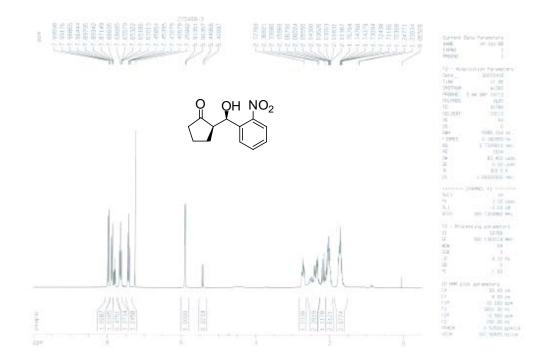
NMR spectra for all the Aldol products


¹H NMR spectra of **5a**

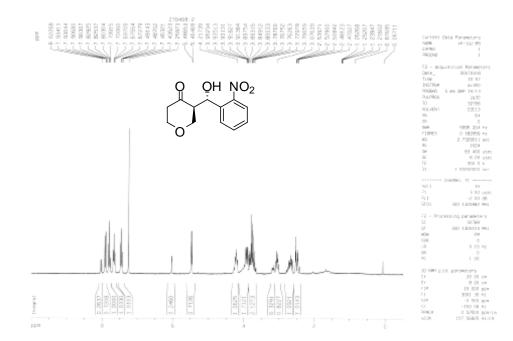

¹H NMR spectra of **5b**

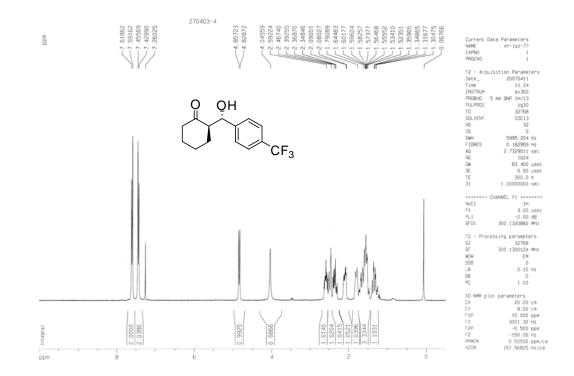

¹H NMR spectra of **5c**

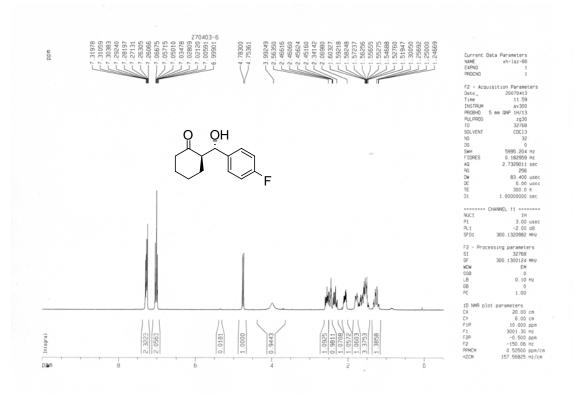

¹H NMR spectra of **5d**

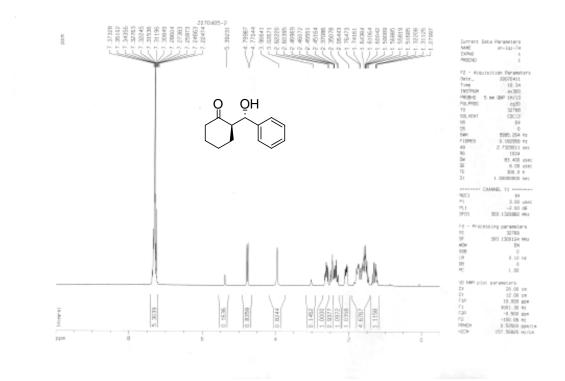


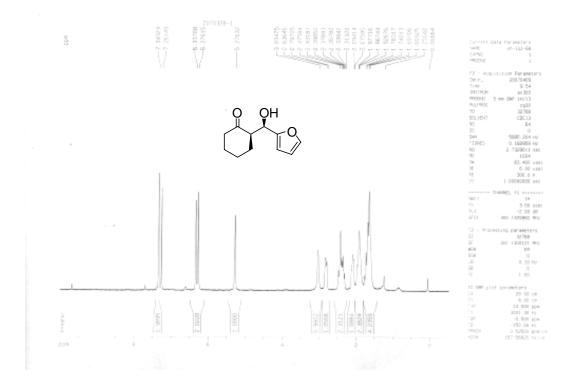
¹H NMR spectra of **5e**



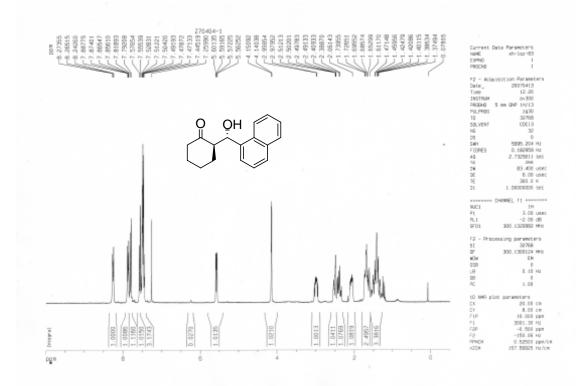

1 H NMR spectra of **5**f

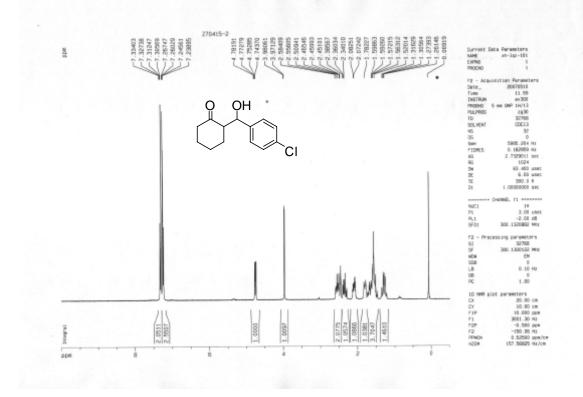


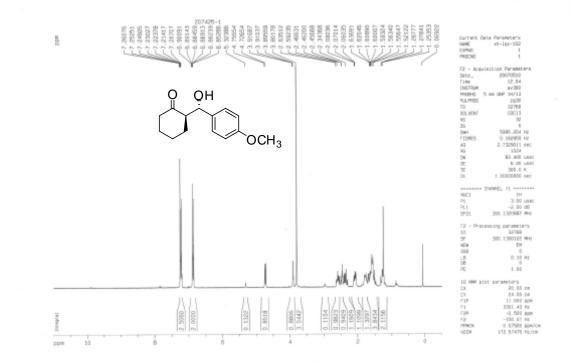

¹H NMR spectra of **5h**

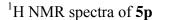


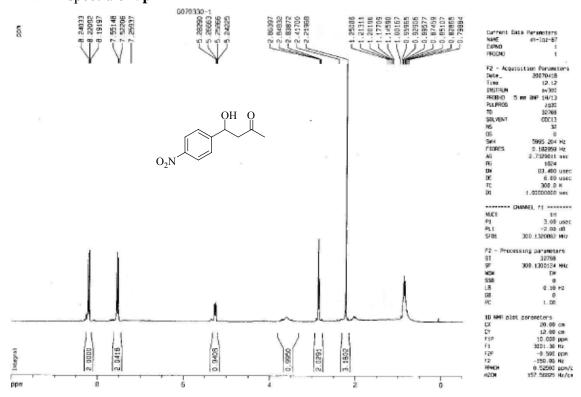
¹H NMR spectra of **5**j



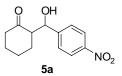

¹H NMR spectra of **5**l

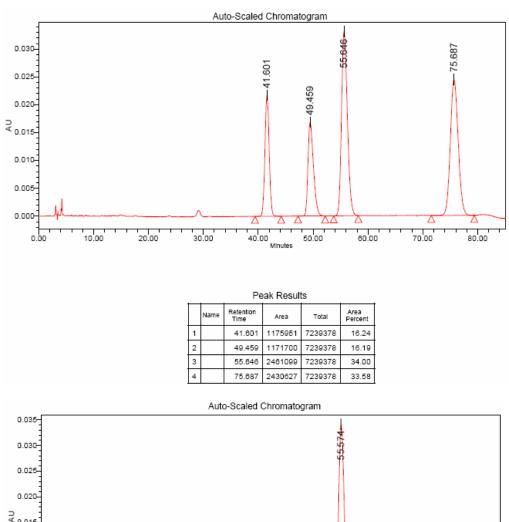


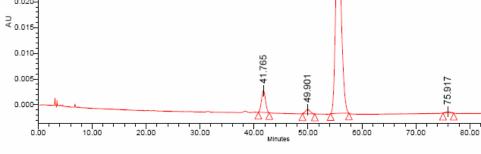

¹H NMR spectra of **5m**

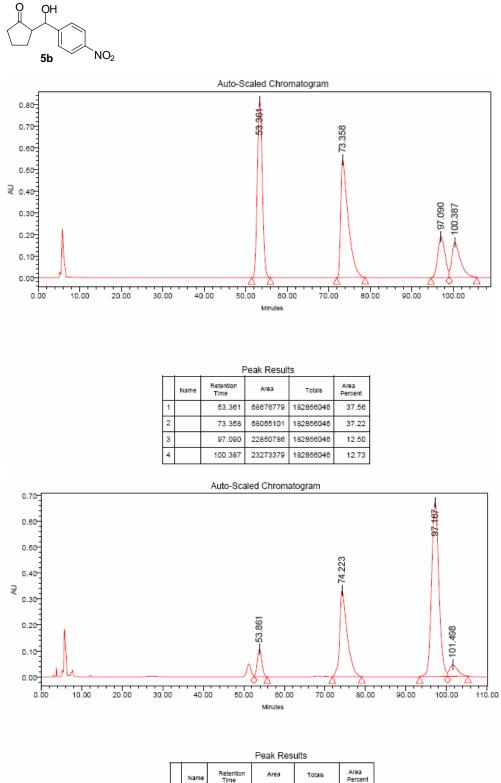


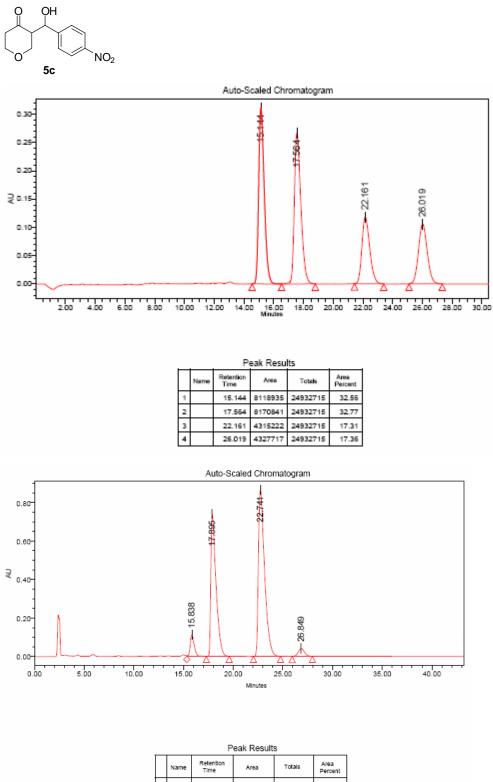
¹H NMR spectra of **5n**

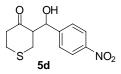


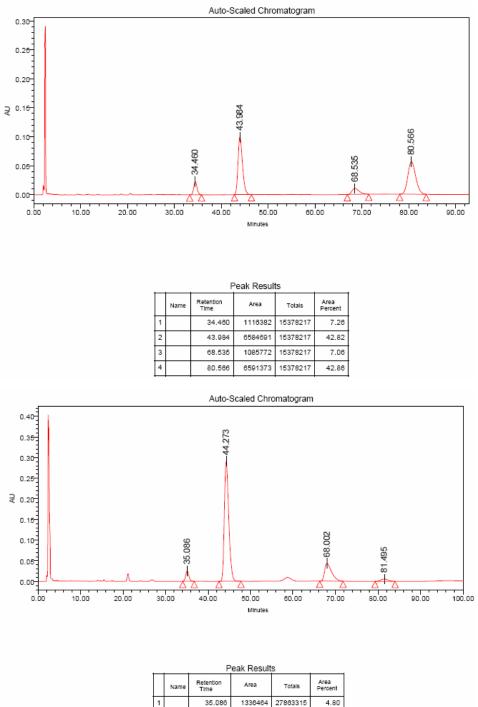




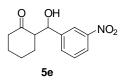

HPLC spectra for compounds 5a-p

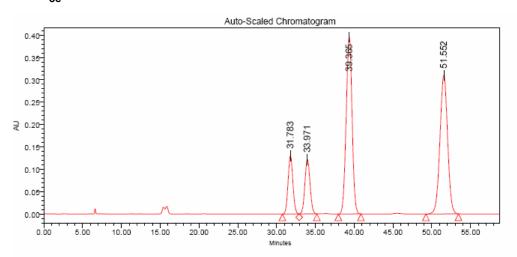


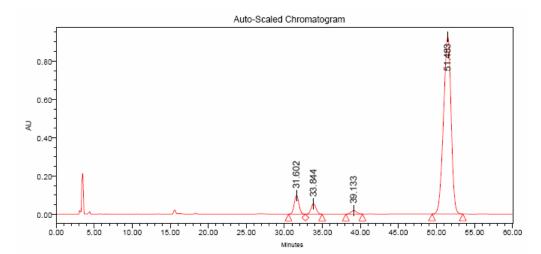

	Peak Results							
	Name	Retention Time	Area	Area Percent	Totals			
1		41.765	217327	7.44	2922071			
2		49.901	51583	1.77	2922071			
3		55.574	2634486	90.16	2922071			
4		75.917	18674	0.64	2922071			



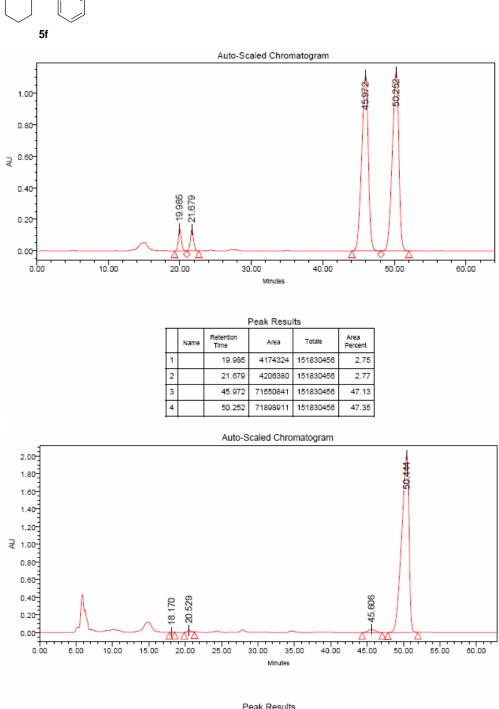
	- taning	Time			Percent
1		53.861	8303914	141484451	5.87
2		74.223	42481783	141484451	30.03
3		97.167	84426561	141464451	59.68
4		101.498	6252192	141464451	4.42




	Peak Results							
	Name	Retention Time	Area	Totals	Area Percent			
1		15.838	3044920	69115858	4.41			
2		17.895	26882502	69115858	38.89			
3		22.741	37444575	69115858	54.18			
4		26.849	1743861	69115858	2.52			



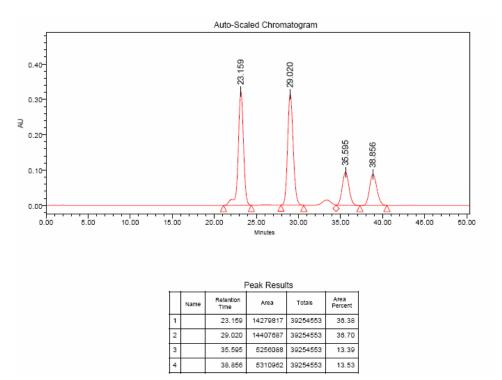
	1005				
1	35.086	1336464	27863315	4.80	
2	44.273	20972541	27863315	75.27	
3	68.002	4880355	27863315	17.52	
4	81.495	673956	27863315	2.42	

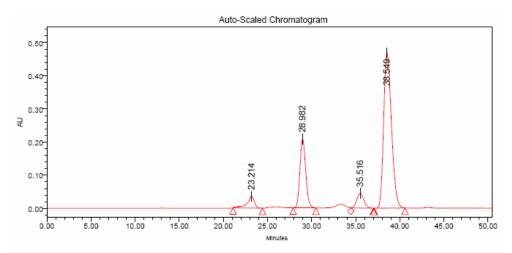


	Peak Results							
	Name	Retention Time	Area	Totals	Area Percent			
1		31.783	5632934	53577892	10.51			
2		33.971	5636854	53577892	10.52			
3		39.365	21023818	53577892	39.24			
4		51.552	21284286	53577892	39.73			

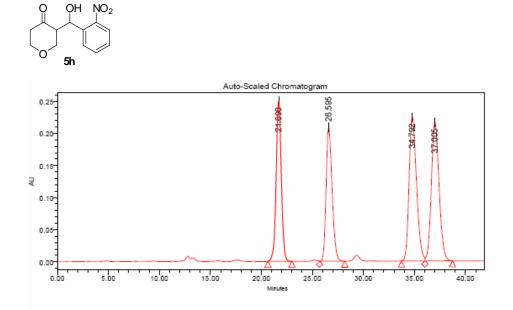
Peak	Results
------	---------

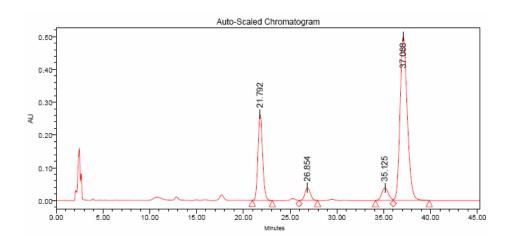
	Name	Retention Time	Area	Totals	Area Percent
1		31.602	4214708	72202576	5.84
2		33.844	2532438	72202576	3.51
3		39.133	964180	72202576	1.34
4		51.483	64491250	72202576	89.32



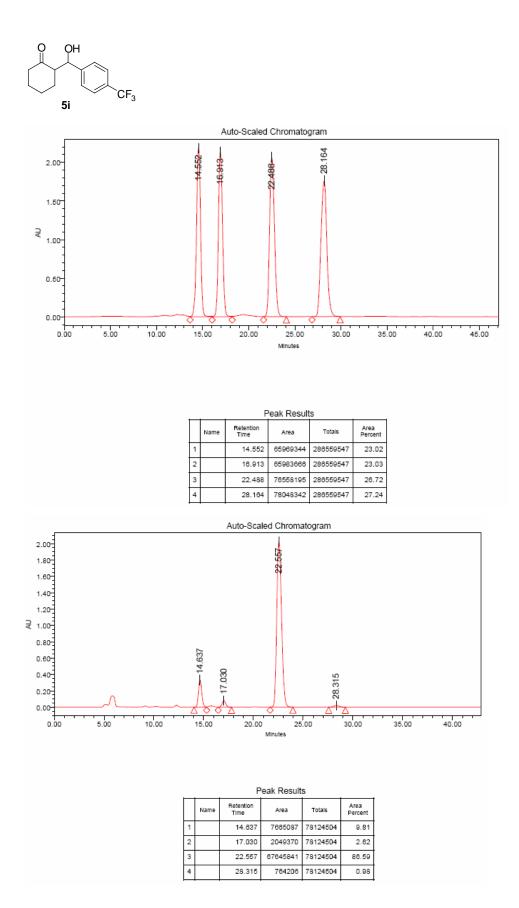

OH NO2

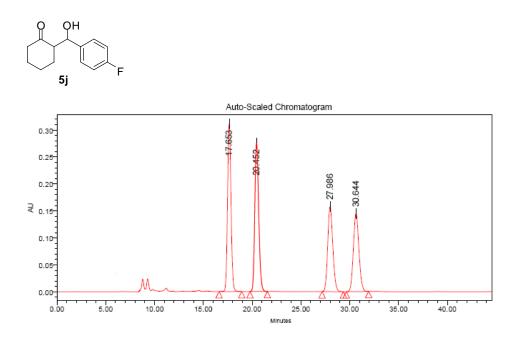
0


	Peak Results					
	Name	Retention Time	Area	Totais	Area Percent	
1		18.170	35037	143944123	0.02	
2		20.529	634556	143944123	0.44	
3		45.606	2238084	143944123	1.55	
4		50.444	141036446	143944123	97.98	

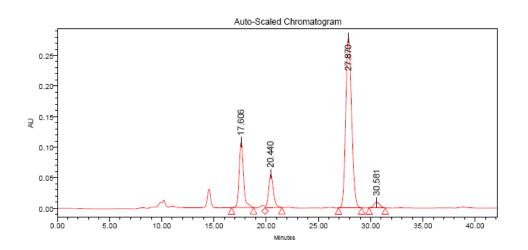


	Peak Results						
	Name	Retention Time	Area	Totais	Area Percent		
1		23.214	2051324	42742869	4.80		
2		28.982	9492631	42742869	22.21		
3		35.516	2455310	42742869	5.74		
4		38.549	28743604	42742869	67.25		

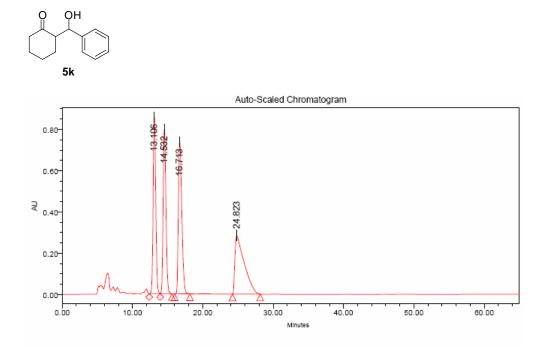



OH NO2

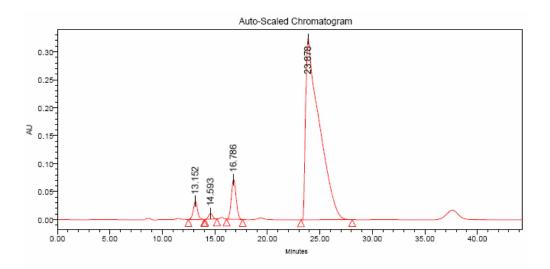
Peak Results						
Name	Retention Time	Area	Totals	Area Percent		
	21.690	8806320	40046701	21.99		
	26.595	8491156	40046701	21.20		
	34.792	11350246	40046701	28.34		
	37.005	11398979	40046701	28.46		
	Name	Name Retention Time 21.690 26.595 34.792 34.792	Name Retention Time Area 21.690 8806320 26.595 8491156 34.792 11350246	Name Retention Time Area Totals 21.690 8806320 40046701 26.595 8491156 40046701 34.792 11350246 40046701		



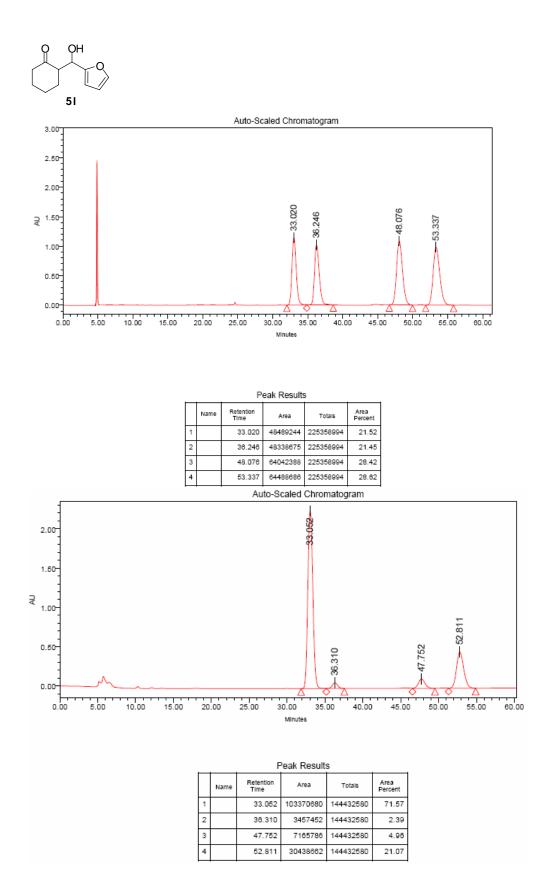
	Peak Results						
	Name	Retention Time	Area	Totais	Area Percent		
1		21.792	8997134	39348780	22.87		
2		26.854	1575373	39348780	4.00		
3		35.125	1891348	39348780	4.81		
4		37.088	26884924	39348780	68.32		

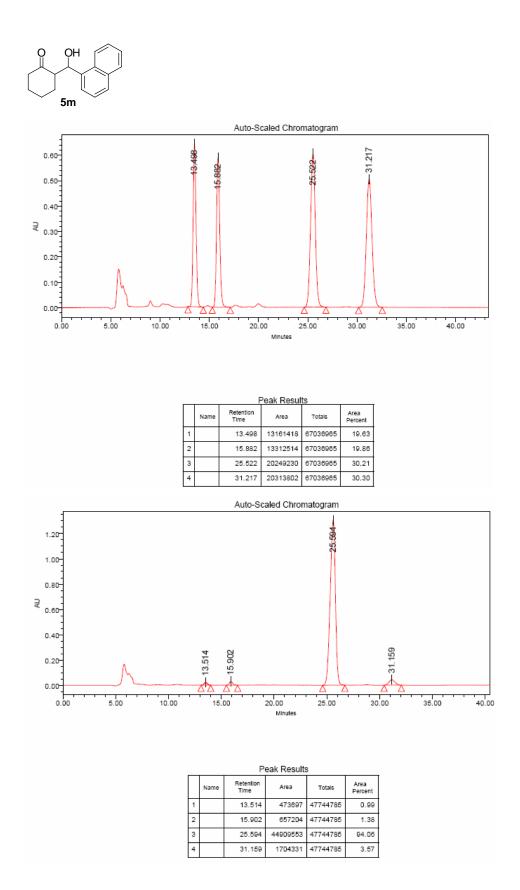


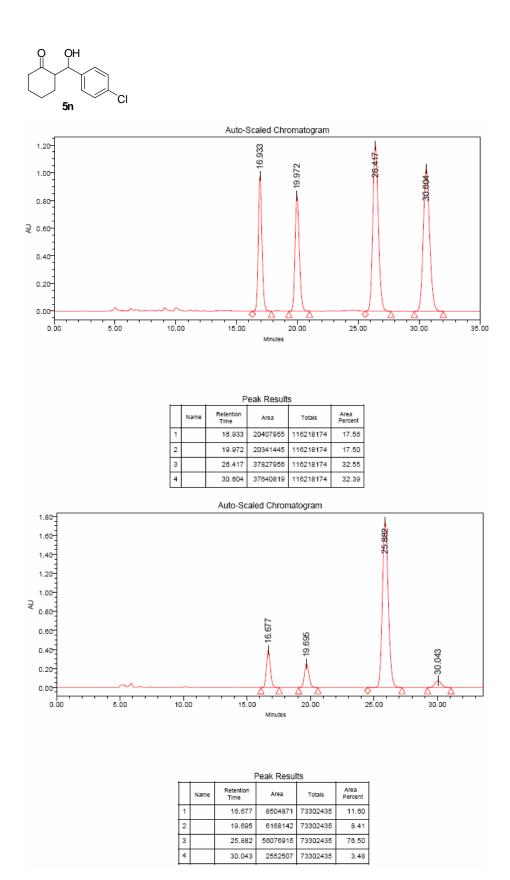
Peak Results						
	Name	Retention Time	Area	Totais	Area Percent	
1		17.653	7682717	26794417	28.67	
2		20.452	7680029	26794417	28.66	
3		27.986	5717704	26794417	21.34	
4		30.644	5713966	26794417	21.33	

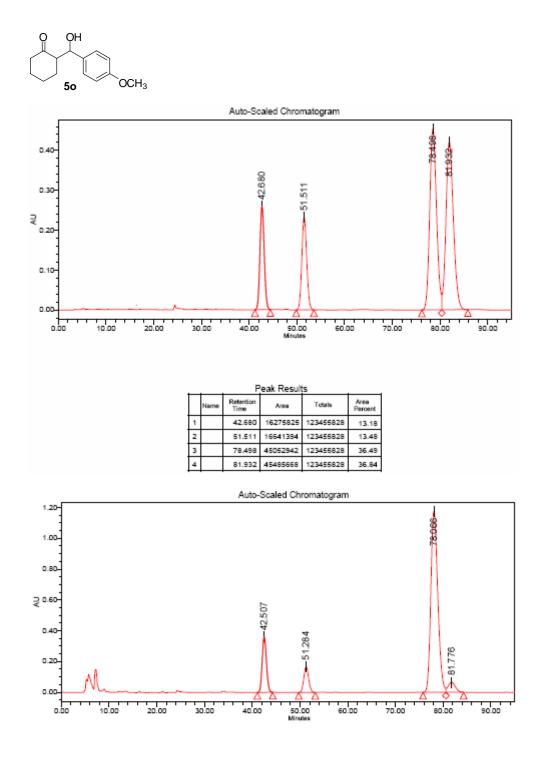


	Peak Results						
	Name	Retention Time	Area	Totals	Area Percent		
1		17.606	3126580	16101738	19.42		
2		20.440	1724573	16101738	10.71		
3		27.870	10889493	16101738	67.63		
4		30.581	361093	16101738	2.24		

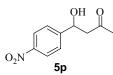


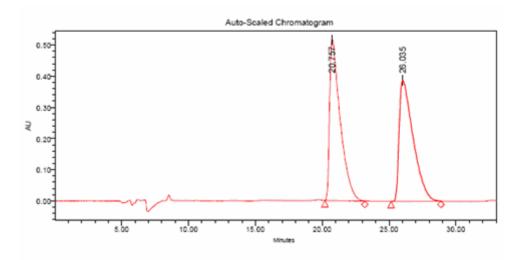

Peak Results

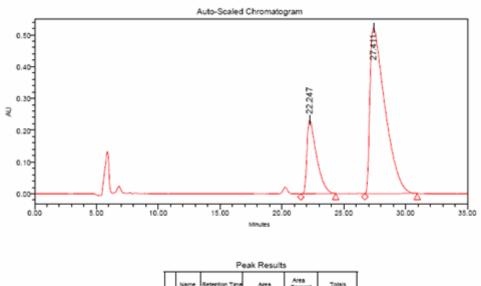

	Name	Retention Time	Area	Totais	Area Percent
1		13.106	21959298	94895842	23.14
2		14.532	22010867	94895842	23.19
3		16.713	24843506	94895842	26.18
4		24.823	26082172	94895842	27.49



Peak Results						
	Name	Retention Time	Area	Totais	Area Percent	
1		13.152	916366	32959514	2.78	
2		14.593	275671	32959514	0.84	
3		16.786	2253980	32959514	6.84	
4		23.878	29513497	32959514	89.54	







Peak Results						
Name	Retention Time	Area	Totais	Area Percent		
	42.507	22408286	160129827	13.99		
	51.284	11851164	160129827	7.40		
	78.066	118967193	160129827	74.29		
	81.776	6903184	160129827	4.31		
	Name	Name Retantion Time 42.507 51.284 78.065	Name Retartion Time Area 42.507 22408286 51.284 11851164 78.066 118967193	Name Retuntion Time Area Totals 42.507 22408265 160129627 51.284 11851164 160129827 78.066 118957193 160129827		

	Peak Results						
	Name	Retention Time	Area	Totals	Area Percent		
1		20.757	28475558	56573053	50.33		
2		26.035	28097495	56573053	49.67		

	Name	Retention Time	Area	Area Percent	Totais
1		22.247	12455410	22.04	\$6500871
2		27.411	44045461	77.96	56500871