Electronic Supporting Information

Efficient Resolution of Racemic *N*-Benzyl β³-Amino Acids by Iterative Liquid-Liquid Extraction with a Chiral (Salen)Cobalt(III) Complex as Enantioselective Selector

Pawel Dzygiel,^a Chiara Monti,^a Umberto Piarulli^{*b} and Cesare Gennari^{*a}

 ^a Dipartimento di Chimica Organica e Industriale, Centro di Eccellenza C.I.S.I., Università degli Studi di Milano, Via G. Venezian, 21, 20133 Milano, Italy
^b Dipartimento di Scienze Chimiche e Ambientali, Università degli Studi dell'Insubria, Via Valleggio, 11, 22100 Como, Italy

(rac)-3-Benzylamino-3-phenylpropionic acid (N-benzyl- β^3 -Homophenylglycine - N-Bn- β^3 -hPhg).

N-Bn- β^3 -hPhg (HPLC trace of a racemic solution of *N*-Bn- β^3 -hPhg)

N-Bn- β^3 -hPhg (¹H-NMR, D₂O-NaOH)

N-Bn- β^3 -hPhg (¹³C-NMR, D₂O-NaOH)

(rac)-3-Benzylaminobutyric acid (N-benzyl- β^3 -homoalanine - N-Bn- β^3 -hAla).

N-Bn- β^3 -hAla (HPLC trace of a racemic solution of *N*-Bn- β^3 -hAla)

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2007

N-Bn- β^3 -hAla (¹H-NMR, D₂O)

(*rac*)-3-Benzylamino-4-methyl pentanoic acid (*N*-benzyl- β^3 -Homovaline - *N*-Bn- β^3 -hVal).

N-Bn- β^3 -hVal (HPLC trace of a racemic solution of *N*-Bn- β^3 -hVal)

N-Bn- β^3 -hVal (¹H-NMR, D₂O)

Extraction of *N*-Bn- β^3 -hPhg.

HPLC trace of the *N*-Bn- β^3 -hPhg solution (Aq4) obtained after the second extraction of *N*-Bn- β^3 -hPhg with (*S*,*S*)-[Co^{III}(1)(OAc)] and cleavage with ascorbic acid (t_r = 8.5 min, *S* enantiomer; t_r = 9.4 min, *R* enantiomer; 90% ee).

HPLC trace of the solution of *N*-Bn- β^3 -hPhg (Aq6) obtained from the organic phase (Org3) following the second extraction of *N*-Bn- β^3 -hPhg with (*R*,*R*)-[Co^{III}(1)(OAc)] and cleavage with ascorbic acid (t_r = 8.6 min, *R* enantiomer; t_r = 9.4 min, *S* enantiomer; 90% ee).

¹H-NMR spectra in CDCl₃ of (*R*,*R*)-[Co^{III}(1)(*N*-Bn- β^3 -hPhg)] obtained from Org2'.

HPLC trace of the aqueous phase (Aq3') following the second extraction of *N*-Bn- β^3 -hPhg with (*R*,*R*)-[Co^{III}(1)(OAc)] (t_r = 8.1 min, *S* enantiomer; t_r = 9.1 min, *R* enantiomer; 93% ee).

HPLC trace of the aqueous phase (Aq5') following the second extraction of *N*-Bn- β^3 -hPhg with (*S*,*S*)-[Co^{III}(1)(OAc)] (t_r = 8.5 min, *S* enantiomer; t_r = 9.7 min, *R* enantiomer; 93% ee).

Extraction of *N*-Bn- β^3 -hAla.

HPLC trace of the *N*-Bn- β^3 -hAla solution (Aq4) following the second extraction of *N*-Bn- β^3 -hAla with (*S*,*S*)-[Co^{III}(1)(OAc)] (t_r = 37.0 min, *R* enantiomer; t_r = 40.5 min, *S* enantiomer; 88% ee).

HPLC trace of the solution of *N*-Bn- β^3 -hAla (Aq6) following the second extraction of *N*-Bn- β^3 -hAla with (*R*,*R*)-[Co^{III}(1)(OAc)] (t_r = 35.1 min, *R* enantiomer; t_r = 40.8 min, *S* enantiomer; 90% ee).

HPLC trace of the aqueous phase (Aq3') following the second extraction of *N*-Bn- β^3 -hAla with (*R*,*R*)-[Co^{III}(1)(OAc)] (t_r = 33.5 min, *R* enantiomer; t_r = 37.1 min, *S* enantiomer; 36% ee).

HPLC trace of the aqueous phase (Aq5') following the second extraction of *N*-Bn- β^3 -hAla with (*S*,*S*)-[Co^{III}(1)(OAc)] (t_r = 33.2 min, *R* enantiomer; t_r = 38.1 min, *S* enantiomer; 83% ee).

Extraction of *N*-Bn- β^3 -hVal.

HPLC trace of the *N*-Bn- β^3 -hVal solution (Aq4) following the second extraction of *N*-Bn- β^3 -hVal with (*S*,*S*)-[Co^{III}(1)(OAc)] [t_r = 7.5 min, (+) enantiomer; t_r = 9.3 min, (-) enantiomer; 90% ee]

HPLC trace of the solution of *N*-Bn- β^3 -hVal (Aq6) following the second extraction of *N*-Bn- β^3 -hVal with (*R*,*R*)-[Co^{III}(1)(OAc)] [t_r = 7.7 min, (+) enantiomer; t_r = 9.0 min, (-) enantiomer; 93% ee].

HPLC trace of the *N*-Bn- β^3 -hVal solution (Aq3') following the second extraction of *N*-Bn- β^3 -hVal with (*R*,*R*)-[Co^{III}(1)(OAc)] [t_r = 7.8 min, (+) enantiomer; t_r = 9.8 min, (-) enantiomer; 80% ee]

HPLC trace of the solution of *N*-Bn- β^3 -hVal (Aq5') following the second extraction of *N*-Bn- β^3 -hVal with (*S*,*S*)-[Co^{III}(1)(OAc)] [t_r = 7.3 min, (+) enantiomer; t_r = 8.4 min, (-) enantiomer; 92% ee].

Attribution of the absolute configuration to *N*-**Bn**- β^3 -**hVal**: by analogy with the complexation selectivity shown for *N*-**Bn**- β^3 -**hPhg** and *N*-**Bn**- β^3 -**hAla**, we attribute to (+)-*N*-**Bn**- β^3 -**hVal** the (*R*) absolute configuration: $[\alpha]_D^{24} = +35.6$, *c* 0.80 in MeOH, 100% ee in favour of (*R*)-enantiomer.