Electronic supplementary information (ESI)

RNA selective cross-pairing of backbone extended pyrrolidine-amide oligonucleotide mimics (bePOMs).

Roberta J. Worthington, Neil M. Bell, Raymond Wong and Jason Micklefield* School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN

Contents

Figure S1. HPLC Traces of crude POM, bePOM I & II

Figure S2. UV melting curves POM vs r(CGCA₈CGC)

Figure S3. UV melting curves POM vs Poly(rA)

Figure S4. UV melting curves POM vs Poly(dA)

Figure S5. UV melting curves POM vs d(CGCA₈CGC)

Figure S6. UV melting curves bePOM I vs r(CGCA₈CGC)

Figure S7. UV melting curves bePOM I *vs* d(CGCA8CGC)

Figure S8. UV melting curves bePOM I vs Poly(rA) and d(A)

Figure S9. UV melting curves bePOM II vs r(CGCA₈CGC)

Figure S10. UV melting curves bePOM II vs Poly(rA)

Figure S11. UV melting curves bePOM II vs Poly(dA) and d(CGCA₈CGC)

Figure S12. CD spectra DNA and RNA single strands

Figure S13. CD spectra of bePOM I & II (28 & 29) vs d(CGCA₈CGC)

Figure S1. HPLC trace of crude: (A) POM Lys- $(T)_8$ -NH₂ 27; (B) bePOM I Lys- $(T)_8$ -NH₂ 28; (C) bePOM II Lys- $(T)_8$ -NH₂ 29.

Figure S2. UV thermal denaturation/renaturation curves and first derivatives for POM Lys- $(T)_8$ -NH₂ **27** *vs.* r(CGCA₈CGC) at 7.6 μ M (total conc. in strands, 1:1 ratio of strands) and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³): (A) slow heating (denaturation) curves and cooling (renaturation) curves for POM **27** *vs.* r(CGCA₈CGC); (B) the corresponding first derivatives for POM **27** *vs.* r(CGCA₈CGC).

Figure S3. UV thermal denaturation/renaturation curves and first derivatives for POM Lys- $(T)_8$ -NH₂ **27** *vs.* poly (rA) at 7.6 μ M (total conc. in strands, 1:1 ratio of strands) and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³): (A) shows slow heating (denaturation) in green and slow cooling (renaturation) curves in blue (0.2 °C/min). The slow heating (denaturation) (0.2 °C/min) curve following pre-incubation at room temperature for 24 h is shown in red for POM **27** *vs.* poly(rA); (B) the corresponding first derivatives for POM **27** *vs.* poly(rA).

Figure S4. UV thermal denaturation/renaturation curves and first derivatives for POM Lys- $(T)_8$ -NH₂ **27** *vs.* poly (dA) at 7.6 μ M (total conc. in strands, 1:1 ratio of strands) and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³): (A) shows slow heating (denaturation) in green and slow cooling (renaturation) curves in blue (0.2 °C/min). The slow heating (denaturation) (0.2 °C/min) curve following pre-incubation at room temperature for 24 h is shown in red for POM **27** *vs.* poly(dA); (B) the corresponding first derivatives for POM **27** *vs.* poly(dA).

Figure S5. UV thermal denaturation/renaturation curves and first derivatives for POM Lys- $(T)_8$ -NH₂ **27** *vs.* d(CGCA₈CGC) at 7.6 μ M (total conc. in strands, 1:1 ratio of strands) and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³): (**A**) shows slow heating (denaturation) in green and slow cooling (renaturation) curves in blue (0.2 °C/min). The slow heating (denaturation) (0.2 °C/min) curve following pre-incubation at room temperature for 24 h is shown in red for POM **27** *vs.* d(CGCA₈CGC); (**B**) the corresponding first derivatives for POM **27** *vs.* d(CGCA₈CGC).

Figure S6. UV thermal denaturation/renaturation curves and first derivatives for bePOM I Lys- $(T)_8$ -NH2 **28** *vs.* r(CGCA₈CGC) at 7.6 μ M (total conc. in strands, 1:1 ratio of strands) and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³): (**A**) shows slow heating (denaturation) in green and slow cooling (renaturation) curves in blue (0.2 °C/min). The slow heating (denaturation) (0.2 °C/min) curve following pre-incubation at room temperature for 24 h is shown in red for POM **28** *vs.* r(CGCA₈CGC); (**B**) the corresponding first derivatives for POM **28** *vs.* r(CGCA₈CGC).

Figure S7. UV thermal denaturation/renaturation curves for bePOM I Lys- $(T)_8$ -NH₂ **28** *vs.* d(CGCA₈CGC) at 7.6 μ M (total conc. in strands, 1:1 ratio of strands) and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³): (**A**) slow heating (denaturation) curves after 24 hr incubation, cooling (renaturation) curves for POM **28** *vs.* d(CGCA₈CGC). Transitions are not evident and no 1st derivatives could be calculated.

Figure S8. UV thermal denaturation/renaturation curves bePOM I Lys-(T)₈-NH₂ **28** *vs*.poly(rA) and poly (dA) at 7.6 μ M (total conc. in strands, 1:1 ratio of strands) and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³): (**A**) slow heating (denaturation) curves after 24 hr incubation, cooling (renaturation) curves for POM **28** *vs*. poly(rA); (**B**) slow heating (denaturation) curves after 24 hr incubation, cooling (renaturation) curves for POM **28** *vs*. poly(dA). Transitions are not evident and no 1st derivatives could be calculated.

Figure S9. UV thermal denaturation/renaturation curves and first derivatives for bePOM II Lys- $(T)_8$ -NH₂ **29** *vs.* r(CGCA₈CGC) at 7.6 μ M (total conc. in strands, 1:1 ratio of strands) and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³): (**A**) slow heating (denaturation) curves and cooling (renaturation) curves for POM **29** *vs.* r(CGCA₈CGC); (**B**) the corresponding first derivatives for POM **29** *vs.* r(CGCA₈CGC).

Figure S10. UV thermal denaturation/renaturation curves and first derivatives for bePOM II Lys- $(T)_8$ -NH₂ **29** *vs.* poly(rA) at 7.6 μ M (total conc. in strands, 1:1 ratio of strands) and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³): (**A**) shows slow heating (denaturation) in green and slow cooling (renaturation) curves in blue (0.2 °C/min). The slow heating (denaturation) (0.2 °C/min) curve following pre-incubation at room temperature for 24 h is shown in red for POM **29** *vs.* poly(rA); (**B**) the corresponding first derivatives for POM **29** *vs.* poly(rA).

Figure S11. UV thermal denaturation/renaturation curves bePOM II Lys- $(T)_8$ -NH2 **29** *vs.* poly(dA) and d(CGCA₈CGC) at 7.6 μ M (total conc. in strands, 1:1 ratio of strands) and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³): (**A**) slow heating (denaturation) curves after 24 hr incubation and cooling (renaturation) curves for POM **29** *vs.* poly(rA); (**B**) slow heating (denaturation) and cooling curves (renaturation) curves for POM **29** *vs.* d(CGCA₈CGC). Transitions are not evident and no 1st derivatives could be calculated.

Figure S12. CD spectra single strands of poly(rA), poly(dA), $d(CGCA_8CGC)$ and $r(CGCA_8CGC)$ at 7.6 μ M and 10 mM K_2HPO_4 , 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³).

Figure S13. CD spectra for bePOM I Lys- $(T)_8$ -NH₂ **28** and bePOM II Lys- $(T)_8$ -NH₂ **29** *vs*. d(CGCA₈CGC) at 7.6 μ M (total conc. in strands, 1:1 ratio of strands) and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³): (A) CD spectra of acquired and calculated for POM **28** *vs*. d(CGCA₈CGC); (B) CD spectra of acquired and calculated for POM **29** *vs*. d(CGCA₈CGC).