Supporting Information for:

Nucleophilic activity of a linked bis{guanidine} leading to formation of a dicationic C₄N₄-heterocycle

Martyn P. Coles, Steven F. Lee, Sarah H. Oakley, Guillermina Estiu, and Peter B. Hitchcock[†]

Department of Chemistry, University of Sussex, Falmer, Brighton BN1-9QJ, UK Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA

Contents:

- pS2 Synthesis of $[H_2C{hpp}_2CH_2][CI]_2$ (2a-H₂).
- $pS2 \quad Synthesis \ of \ [H_2C\{hpp\}_2CH_2][BPh_4]_2 \ (\textbf{2b}).$
- pS3 General procedure for the preparation of $[H_2C{hppR}_2][X]_2$.
- pS3 General procedure for the preparation of {H₂C{hppR}₂][BPh₄]₂.
- pS3 Characterizing data for [H₂C{hppMe}₂][I]₂ (3a).
- pS3 Characterizing data for $[H_2C{hppCH_2Ph}_2][BPh_4]_2$ (4b).
- pS4 Reaction of $H_2C{hpp}_2$ with Me_2CHI .
- pS5 Optimized coordinates for 'chair'-conformation (A)
- pS6 Optimized coordinates for 'twist-boat'-conformation (C)
- pS7 Optimized coordinates for transition-state (B)
- pS8 ORTEP for [H₂C{hpp}₂CH₂][BPh₄]₂ (**2b**)
- pS9 ORTEP for $[H_2C{hppCH_2Ph}_2][BPh_4]_2$ (4b)

[H₂C{hpp}₂CH₂][Cl]₂ (**2a-H₂**)

H₂C{hpp}₂ (**1**, 1.00g, 3.44 mmol) was dissolved in CH₂Cl₂ (~ 2 mL) and left at room temperature for 3 days, during which time colourless crystals deposited from solution. Yield 0.77 g, (41 %, calculated for the bis-dichloromethane solvate). Elemental analysis calcd (%) for C₁₆H₂₈Cl₂N₆·2(CH₂Cl₂) (*542.08*): C 39.85, H 5.95, N 15.50; found: C 39.73, H 6.18, N 15.41. **2a-H₂**: ¹H NMR (500 MHz, D₂O, 298 K): Major Isomer: δ 5.15 and 4.22 (d, ²J_{HH} = 15.6, *exocyclic CH₂*). Minor Isomer: δ 5.31 and 4.31 (d, ²J_{HH} = 15.8, *exocyclic CH₂*). The remaining methylene groups of the bicyclic framework overlap in the following regions: δ 3.43 (m, 4H, hpp-CH₂), 3.29 (m, 8H, hpp-CH₂), 3.20 (m, 4H, hpp-CH₂), 1.88 (m, 8H, hpp-CH₂). ¹³C NMR (125 MHz, D₂O, 298 K): δ 160.8 (*C*N₃), 152.0 (*C*N₃), 74.8 (*exocyclic CH₂*), 68.1 (*exocyclic CH₂*), 47.5 (hpp-CH₂), 47.4 (hpp-CH₂), 47.2 (hpp-CH₂), 21.4 (hpp-CH₂), 21.1 (hpp-CH₂). **2a-D₂**: [²H]- NMR (76.8 MHz, D₂O, 298 K): 5.05 (br, CD₂), 4.13 (br, CD₂).

$[H_2C{hpp}_2CH_2][BPh_4]_2$ (**2b**)

A solution of NaBPh₄ (0.25 g, 0.73 mmol) in 2 mL H₂O was added *via* syringe to **2a**-*H*₂ (0.20 g, 0.37 mmol) in 1 mL H₂O, causing the immediate precipitation of a white solid. The product was isolated by filtration and purified by slow cooling of a saturated MeCN solution, affording pure **2b** as colourless prisms. Yield 0.25 g, (72 %). Elemental analysis calcd (%) for C₆₄H₆₈B₂N₆ (*931.56*): C 81.53, H 7.21, N 8.92; found: C 81.46, H 7.25, N 8.89. ¹H NMR (300 MHz, CD₃CN, 298 K): Anion resonances: δ 7.25 (br m, 16H, *o*-C₆*H*₅), 6.99 (t, ³*J*_{HH} = 7.40, 16H, *m*-C₆*H*₅), 6.83 (t, ³*J*_{HH} = 7.22, 8H, *p*-C₆*H*₅). Major Isomer: δ 5.06 and 4.15 (d, ²*J*_{HH} = 15.7, *exocyclic CH*₂). Minor Isomer: 5.17 and 4.20 (d, ²*J*_{HH} = 15.9, *exocyclic CH*₂). The remaining methylene groups of the bicyclic framework overlap in the following regions: δ 3.42 (m, 4H, hpp-C*H*₂), 3.34 (m, 8H, hpp-C*H*₂), 3.26 (m, 4H, hpp-C*H*₂), 1.93 (m, 8H, hpp-C*H*₂). ¹³C NMR (75 MHz, CD₃CN, 353 K): δ 164.2 (q, ¹*J*_{CB} = 49.1, *i*-C₆H₅), 161.4 (*C*N₃), 136.1 (*C*₆H₅), 125.8 (q, *J*_{CB} = 2.7, *C*₆H₅), 122.0 (*C*₆H₅), 75.4 (*exocyclic CH*₂), 68.7 (*exocyclic CH*₂), 48.1 (hpp-CH₂), 48.0 (hpp-CH₂), 47.9 (hpp-CH₂), 47.8 (hpp-CH₂), 21.9 (hpp-CH₂), 21.6 (hpp-CH₂).

General procedure for the preparation of [H₂C{hppR}₂][X]₂

A sample of **1** was dissolved in neat R-X reagent and stirred for 1-3 days. Addition of Et₂O resulted in formation of a white solid that was separated from excess RX by filtration.

General procedure for the preparation of {H₂C{hppR}₂][BPh₄]₂

A solution of two equivalents of NaBPh₄ in H_2O was added to an aqueous stirred solution of [{ H_2C {hppR}₂][X]₂. The product generally precipitated from the reaction mixture and was isolated by filtration. Purification was achieved by crystallization, as detailed below:

[H₂C{hppMe}₂][I]₂ (3).

Compound **3a** was purified by crystallization from MeOH at -30 °C. Yield 98 %. Elemental analysis calcd (%) for $C_{17}H_{32}N_6I_2$ (*574.08*): C 35.54, H 5.62, N 14.64; found: C 35.65, H 5.72, N 14.53. ¹H NMR (300 MHz, D₂O, 298 K): δ 4.72 (s, 2H, *H*₂C{hppMe}₂), 3.38 (m, 8H, hpp-C*H*₂), 3.20 (m, 8H, hpp-C*H*₂), 2.91 (s, 6H, hpp*M*e), 1.96 (m, 8H, hpp-C*H*₂). ¹³C NMR (75 MHz, D₂O, 298 K): δ 158.2 (*C*N₃), 66.1 (H₂C{hppMe}₂), 48.9 (hpp-*C*H₂), 48.3 (hpp-*C*H₂), 48.1 (hpp-*C*H₂), 44.1 (hpp-*C*H₂), 41.6 (hpp*M*e), 21.4 (hpp-*C*H₂), 20.6 (hpp-*C*H₂).

$[H_2C{hppCH_2Ph}_2][BPh_4]_2$ (**4b**).

Compound **4b** was purified by crystallization from MeOH / acetone at room temperature. Yield 65 %. Elemental analysis calcd (%) for $C_{77}H_{80}B_2N_6$ (*1111.12*): C 83.19, H 7.26, N 7.56; found: C 83.23, H 7.30, N 7.61. ¹H NMR (300 MHz, D₆-acetone, 298 K): Anion resonances: δ 7.36 (br m, 16H, o-C₆ H_5), 6.95 (t, ³ J_{HH} = 7.38, 16H, m-C₆ H_5), 6.81 (t, ³ J_{HH} = 7.19, 8H, p-C₆ H_5). Cation resonances: δ 7.41 (m, 6H, *m*- and p-C₆ H_5), 7.27 (d, ³ J_{HH} = 7.50, 4H, o-C₆ H_5), 5.01 (s, 2H, H_2 C{hppCH₂Ph}₂), 4.44 (s, 4H, hppC H_2 Ph), 3.49 (m, 12H, hpp-C H_2), 3.27 (m, 4H, hpp-C H_2), 2.14 (m, 4H, hpp-C H_2), 1.88 (m, 4H, hpp-C H_2). ¹³C NMR (75 MHz, D₆-acetone, 273K): δ 164.6 (q, ¹ J_{CB} = 49.1, *i*-C₆H₅-BPh₄), 158.9 (CN₃), 136.6 (C_6H_5 -BPh₄), 135.1 (CH₂Ph), 129.8 (CH₂Ph), 128.8 (CH₂Ph), 127.6 (CH₂Ph), 125.7 (q, J_{CB} = 2.8, C_6H_5 -BPh₄), 122.0 (C_6H_5), 66.2 (H₂C{hppCH₂Ph}₂), 57.0 (H₂C{hppCH₂Ph}₂), 20.9 (hpp-CH₂).

Reaction of H₂C{hpp}₂ with Me₂CHI

Excess Me₂CHI was added to an NMR tube containing a solution of H₂C{hpp}₂ in CD₃CN and the sample was sealed. After 15h the ¹H NMR spectrum showed 100% conversion to a new guanidine containing species, with resonances at δ 6.07 (m, 1H, =C*H*Me), 5.29-5.13 (m, 2H, =C*H*₂) and 1.37 (d, *J* = 6.6 Hz, =CH*Me*) corresponding to propene.

¹H NMR (300 MHz, CD₃CN, 298 K): δ 5.19 (s, 2H, *H*₂C{hpp}{hppH}), 3.63 (m, 4H, hpp-C*H*₂), 3.51 (m, 4H, hpp-C*H*₂), 3.41 (m, 8H, hpp-C*H*₂), 2.17 (m, 8H, hpp-C*H*₂).^{‡ 13}C NMR (75 MHz, CD₃CN, 298 K): δ 152.2 (*C*N₃), 66.6 (H₂C{hpp}{hppH}), 48.2 (hpp-*C*H₂), 48.0 (hpp-*C*H₂), 47.7 (hpp-*C*H₂), 41.0 (hpp-*C*H₂), 22.5 (hpp-*C*H₂), 22.2 (hpp-*C*H₂).

(‡ resonance corresponding to the NH proton(s) not observed).

Optimized coordinates for 'chair'-conformation (red)

2,241790	1,229019	-2.511783
-2 213321	1 188580	-2 555799
1 222151	2 624707	-1 025761
1 227054	2.024797	1 00007
-1.337054	2.599384	-1.965057
-3.84/433	2.909408	-1.682427
3.831294	2.974299	-1.605982
1.993604	1.816288	-1.621033
-1.991413	1.780894	-1.661437
4.671352	0.756373	-1.348391
-4.656649	0.678709	-1.438617
-3.267965	2.286278	-0.995126
3.249089	2.341155	-0.930209
0.020345	-1.217511	-0.970913
1.248204	0.957376	-0.670783
-4.109060	1.085025	-0.580675
-4.818233	-1.436605	-0.276478
4.101393	1.153237	-0.500818
-1.250432	0.935154	-0.696096
-3.012889	2,905517	-0.127819
4.844825	-1.357225	-0.182782
2 967622	2,955200	-0.067408
-0.020056	2.533977	-0.209820
-4 844826	1 357225	0 182782
3 289707	0 027444	0 031940
-0 011652	1 448086	-0 094265
1 957977	0 016878	0.004200
-3 289708	-0 027444	-0 031940
-2 967623	-2 955200	0.051040
	-2.955200	0.007407
3.012888	-2.905517	0.12/019
-1.95/9/0	-0.010070	-0.019360
4.010232	1 440000	0.276477
0.011651	-1.448086	0.094265
-4.101394	-1.153237	0.500818
0.020055	-2.533977	0.209819
4.109059	-1.085025	0.5806/5
1.250431	-0.935154	0.696095
-3.249090	-2.341155	0.930209
3.267964	-2.286278	0.995126
-1.248205	-0.957376	0.670783
-4.671352	-0.756373	1.348390
-0.020345	1.217511	0.970912
4.656649	-0.678709	1.438617
-3.831294	-2.974299	1.605982
3.847432	-2.909408	1.682427
1.991412	-1.780894	1.661436
-1.993605	-1.816288	1.621033
1.337053	-2.599384	1.965057
-1.332152	-2.624797	1.935760
-2.241791	-1.229019	2.511783
2.213321	-1.188580	2.555799

Optimized coordinates for 'twist-boat'-conformation (blue)

6	-4.193875	-1.089502	2.176698
6 7	-4.242514	0.400797	1 001004
7 6	-1 871514	0.920015	1 302915
e 7	-2.122999	-1.056461	0.804326
, 6	-3.376417	-1.797215	1.106692
6	-2.591702	2.284311	2.320008
6	-1.550171	2.953850	1.432410
6	-0.283967	2.109875	1.433036
7	-0.592741	0.665118	1.277756
6	-1.248861	-1.717230	-0.192530
7	-0.653053	-0.817477	-1.160746
6	-1.367249	-0.565292	-2.433350
6	-0.556663	-1.177442	-3.570047
6 7	0.81/280	-0.518936	-3.58/191
6	0 678614	-0.209133	-2.225198
7	1 287924	-0 448152	0 109390
6	2.769811	-0.396461	0.145694
6	3.249603	0.642513	-0.860867
6	2.751262	0.247785	-2.244260
6	0.542735	-0.232372	1.373552
1	-5.203555	-1.509218	2.194545
1	-3.756455	-1.244856	3.168902
1	-4.758464	0.950022	2.654337
1	-4.760097	0.602660	0.918283
1	-3.104245	-2.808432	1.42/960
1	-2 261339	2 226397	3 364756
1	-3.536721	2.829852	2.295121
1	-1.315757	3.954828	1.805421
1	-1.949525	3.065609	0.418380
1	0.256427	2.236458	2.378801
1	0.387925	2.404020	0.619318
1	-1.899195	-2.413280	-0.728292
	-0.473702	-2.319951	0.284421
1	-1.492676	0.514936	-2.56916/ 2.251770
⊥ 1	-2.301/51	-1.006451 -1.014212	-2.351770
1	-0 474025	-2 259765	-3 422161
1	0.775400	0.452832	-4.092213
1	1.547090	-1.136337	-4.120943
1	3.170746	-1.390505	-0.082160
1	3.074543	-0.146588	1.163091
1	4.342135	0.693975	-0.872505
1	2.878410	1.633216	-0.575978
1	3.378354	-0.542249	-2.673057
⊥ 1	2.//5650	1.098025	-2.933644
⊥ 1	1 262300	-1.1/5495 0.216314	2.062068
-		0.210011	2.002000

Optimized coordinates for transition-state (green)

-2.040040 -2.635830	-2.485834 -2.508056	-0.287545 1.107978
-1.162507	-1.276896	-0.409882
-3.514566	-1.272188	1.223176
0.195370	-1.756699	-0.797943
-1.810158	-0.093708	-0.205239
1.472644	-1.005113	-0.856110
-3.008899	-0.131331	0.415445
-1.337663	1.104672	-0.642142
2.583955	-1.966598	-1.108789
1.839/96	0.124358 1 227622	-U.1/5699
-0.030520	1.23/623	-1.2532//
-2 058648	2 352091	-0 289314
3.258888	-2.300249	0.216218
3.009538	0.179668	0.468395
-3.546868	2.130543	-0.489530
1.049857	1.216434	-0.274877
3.846275	-1.009779	0.774458
3.595930	1.448292	0.971201
1.379362	2.444740	0.480103
2.884694	2.672815	0.414814
2.169535	-2.847734	-1.601173
-1.440100	-3.372629	-0.409291
-4.946851	0.593275	0.125488
0.083026	-2.187102	-1.798351
-0.008933	2.196563	-1.773498
-3.236438	-3.408351	1.266377
-4.521822	-1.488775	0.852606
-4.064775	1.344111	1.460044
-1.685516	3.136116	-0.950674
-1.836433	2.641607	0.746042
4.056918	-3.03586/	0.080404
-2.015000	-2.43172	-1.059303
-3.748182	1.893820	-1.539419
-1.833787	-2.510806	1.853758
-4.108398	3.034783	-0.238707
-3.611136	-0.929407	2.259278
4.829328	-0.815825	0.332110
4.654518	1.449556	0.694188
3.976050	-1.055378	1.860984
3.280503	-1.499114	-1.811831
3.540649	1.421/16 2 270521	2.065/88
1 022704	2.2/0521 2.348311	1 515901
3.184564	2.860075	-0.621786
3.164997	3.551213	1.002993
0.379196	-2.580311	-0.098295

ORTEP for [H₂C{hppCH₂Ph}₂][BPh₄]₂ (4b)

¹³C NMR [H₂C{hpp}₂CH₂] [CI]₂ (2a-H₂): D₂O, 298K, 125 MHz

¹H NMR [H₂C{hpp}₂CH₂] [BPh₄]₂ (2b): CD₃CN, 298K, 300 MHz

¹³C NMR [H₂C{hpp}₂CH₂] [BPh₄]₂ (2b): CD₃CN, 333K, 75 MHz

¹H NMR [H₂C{hppMe}₂] [I]₂ (3): D₂O, 298K, 300 MHz

¹³C NMR [H₂C{hppMe}₂] [I]₂ (3): D₂O, 298K, 75 MHz (+ DEPT 135)

¹³C NMR [H₂C{hppCH₂Ph}₂] [BPh₄]₂ (4b): D₆-acetone, 298K, 75 MHz