Electronic Supplementary Information

Solvent control of optical resolution of 2-amino-1-phenylethanol using dehydroabietic acid

Kayoko Taniguchi,^{**a,b*} Marie Aruga,^{*a*} Mikio Yasutake^{*a*} and Takuji Hirose^{**a*}

^a Graduate School of Science and Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan, ^b Eco-Soft Materials Research Unit, RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan.

E-mail: hirose@apc.saitama-u.ac.jp; kytaniguchi@riken.jp

Contents:

1. Solvent dependency of molar rotation of enantiomers and the chiral salts	S2
2. Solvent dependency of molar rotation of diastereomeric salts	S3
3. Hydrogen bonding geometry of diastereomeric salts	S4

1. Solvent dependency of molar rotation of enantiomers and the chiral salts

Fig. S1 Solvent dependency of molar rotation of (*R*)- and (*S*)-1 and the chiral salt with CH₃COOH ($1/CH_3COOH$). (*R*)-1(\blacktriangle), (*S*)-1(\triangle), and 1/CH₃COOH(\times).

Fig. S2 Solvent dependency of molar rotation of **2** and the chiral salt with 2-AE (2-AE/2) and 2-PrNH₂ (2-PrNH₂/2). $2(\circ)$, 2-AE/2(+), 2-PrNH₂/2(\Box).

2. Solvent dependency of molar rotation of diastereomeric salts

Fig. S3 Solvent dependence of molar rotation of the diastereomeric salts ((R)-1/2 and (S)-1/2). (R)-1/2 (\Diamond), (S)-1/(2) (1:1) (\blacklozenge), (S)-1/(2) (1:2) (\blacksquare).

3. Hydrogen bonding geometry of the diastereomeric salts

D-H (Å)	D…A (Å)	H…A (Å)	D-H…A (°)	*Sym.	
O4-H40	O4…O2	H40…O2	O4-H40…O2	(1)	
0.84	2.709(4)	1.88	170	(1)	
N1-H30	N1…O2	H30…O2	N1-H30…O2	(2)	
0.91	2.787(5)	1.93	155		
O3-H31	O3…O4	H31…O4	O3-H31…O4	(3)	
0.84	2.714(5)	1.88	176	(3)	
N1-H28	N1…O1	H28…O1	N1-H28…O1	(4)	
0.91	2.789(4)	1.90	166		
N1-H29	N1…O1	H29…O1	N1-H29…O1	(1)	
0.91	2.721(5)	1.82	169	(1)	
* (1) +x, +y, +z; (2) +x, -1+y, +z; (3) 1-x, -3/2+y, 1-z; (4) 1-x, -1/2+y,					
1-z.					

Table S1Hydrogen bonding geometry of the (R)-1/2 salt.

Fig. S4 Hydrogen bonding geometry of the (R)-1/2 salt.

D-H (Å)	D…A (Å)	H…A (Å)	D-H…A (°)	*Sym.
N1-H1	N1…O2	H1 ···O2	N1-H1…O2	(1)
0.91	2.788(5)	1.88	172	(1)
N1-H2	N1…O3	H2…O3	N1-H2…O3	(2)
0.91	2.655(6)	1.87	144	(2)
O5-H67	O5…O2	H67…O2	O5-H67…O2	(3)
0.84	2.582(5)	1.75	173	
O1-H7	01…04	H7…O4	O1-H7…O4	(5)
0.84	2.695(6)	1.91	155	(5)
N1-H3	N1…O2	Н3…О2	N1-H3…O2	(4)
0.91	3.049(5)	2.29	141	(+)

Table S2Hydrogen bonding geometry of the (S)-1/2 (1:2) salt.

*(1) 1+ x, +y, +z; (2) +x, +y, +z; (3) -x, -1/2+y, 1/2-z; (4) 1/2+x, 3/2-y, -z; (5) 3/2-x, 1-y, -1/2+z.

Fig. S5 Hydrogen bonding geometry of the (S)-1/2 (1:2) salt.

	5 0	00 5		,	
	D-H (Å)	D. A (Å)	H···A (Å)	D-H…A (°)	*Sym.
-	N1-H38	N1…O1	H38…O1	N1-H38…O1	(1)
	0.91	2.729(3)	1.82	174	(-)
	N1-H39	N1…O2	H39…O2	N1-H39…O2	(2)
	0.91	2.764(3)	1.86	170	(2)
	N1-H37	N1…O2	H37…O2	N1-H37…O2	(3)
	0.91	2.744(3)	1.84	175	
	O3-H34	03…01	H34…O1	O3-H34…O1	(2)
	0.84	2.884(3)	2.09	159	(2)

Table S3 Hydrogen bonding geometry of the (S)-1/2 (1:1) salt.

*(1) +x, +y, +z; (2) 1-x, -1/2+y, 1-z; (3) +x, -1+y, +z.

Fig. S6 Hydrogen bonding geometry of the (S)-1/2 (1:1) salt.