Supporting information

Unusual Radical 6-*endo* Cyclization to the Carbocyclic-ENA and Elucidation of its Solution Conformation by 600 MHz NMR and *ab initio* Calculations

Chuanzheng Zhou, Oleksandr Plashkevych and Jyoti Chattopadhyaya*

Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University,

SE-751 23 Uppsala, Sweden

jyoti@boc.uu.se

Contents:

General experimental methods.	3
Figure S1. ¹ H NMR spectrum of mixture of 8 and 9	4
Figure S2. ¹³ C NMR spectrum of mixture of 8 and 9	5
Figure S3. DEPT NMR spectra of mixture of 8 and 9	6
Figure S4. COSY spectrum of mixture of 8 and 9	7
Figure S5. COSY spectrum of mixture of 8 and 9	8
Figure S6. COSY spectrum of mixture of 8 and 9	9
Figure S7. HMQC spectrum of mixture of 8 and 91	0
Figure S8. Expension of HMQC spectrum of mixture of 8 and 9 1	0
Figure S9. ¹ H NMR spectrum of compound 7 1	1
Figure S10. ¹³ C NMR spectrum of compound 7 1	2
Figure S11. COSY spectrum of compound 7 1	3
Figure S12. HMQC spectrum of compound 7 14	4
Figure S13. HMBC spectrum of compound 7 1	5
Figure S14. 1D nOe NMR spectrum of compound 7 1	6
Figure S15. 1D nOe NMR spectrum of compound 8 1	7
Figure S16. ¹ H NMR spectrum of compound 10	8
Figure S17. ¹³ C NMR spectrum of compound 10 1	9
Figure S18. ¹ H NMR spectrum of compound 11	0
Figure S19. ¹³ C NMR spectrum of compound 11	1
Figure S20. ¹ H NMR spectrum of compound 12	2
Figure S21. ¹³ C NMR spectrum of compound 12	3
Figure S22. ¹ H NMR spectrum of compound 13	4
Figure S23. ¹³ C NMR spectrum of compound 13	5
Figure S24. ¹ H NMR spectrum of compound 14	6
Figure S25. ¹³ C NMR spectrum of compound 14	7
Figure S26. ¹ H NMR spectrum of compound 1	8
Figure S27. ¹ H NMR spectrum of compound 1	9

Figure S28. DEPT spectrum of compound 1.	. 30
Figure S29. HMQC spectrum of compound 1.	. 31
Figure S30. HMBC spectrum of compound 1	. 32
Figure S31. DQF-COSY spectrum of compound 1.	. 33
Figure S32. 1D-nOe spectrum of compound 1	. 34
Figure S33. Homodecoupling NMR spectra of compound 1.	. 35
Table S1. Sugar moiety conformation parameters ^a of compound 1	. 39

General experimental methods.

Chromatographic separations were performed on Merck G60 silica gel. Thin layer chromatography (TLC) was performed on Merck pre-coated silica gel 60 F₂₅₄ glassbacked plates. ¹H NMR spectra were recorded at 600 MHz and 500 MHz respectively, using TMS (0.0 ppm) as internal standards. ¹³C NMR spectra were recorded at 125.7 MHz and 150.9 MHz respectively. Chemical shifts are reported in ppm (& scale). MALDI-TOF mass spectra were recorded in positive ion mode. The mass spectrometer was externally calibrated with a peptide mixture using alpha-cyano-4-hydroxycinnamic acids as matrix.

Figure S1. ¹H NMR spectrum of mixture of 8 and 9.

Figure S4. COSY spectrum of mixture of 8 and 9.

Figure S5. COSY spectrum of mixture of 8 and 9.

Figure S6. COSY spectrum of mixture of 8 and 9.

Figure S7. HMQC spectrum of mixture of 8 and 9.

Figure S8. Expension of HMQC spectrum of mixture of 8 and 9.

Figure S9. ¹H NMR spectrum of compound 7.

Figure S12. HMQC spectrum of compound 7.

Figure S13. HMBC spectrum of compound 7.

5.2%

Figure S16.¹H NMR spectrum of compound 10.

Figure S18. ¹H NMR spectrum of compound 11.

Figure S22.¹H NMR spectrum of compound 13.

Figure S24. ¹H NMR spectrum of compound 14.

Figure S26.¹H NMR spectrum of compound 1.

Figure S30. HMBC spectrum of compound 1.

H3'

3'0H

35

=11.0 Hz.

Sugar conformational parameters	1 (carba-ENA T)	carba- ENA U	8'-Me carba- ENA	ENA	Aza- ENA
v _{0:} C4'-O4'-C1'-C2'	-0.96°		-0.7	-1.05	-0.91
v ₁ :O4'-C1'-C2'-C3'	-27.45°		-27.8	-28.10	-28.21
v ₂ :C1'-C2'-C3'-C4'	43.23°		43.5	43.70	43.87
v ₃ :C2'-C3'-C4'-O4'	-44.61°		-45.0	-44.84	-45.14
v ₄ :C3'-C4'-O4'-C1'	29.19°		29.20	28.88	29.65
Phase angle P	19.6	20°	19.4	19.1	19.4
Puckering amplitude Ψm:	45.9	46°	47.1	46.3	46.5

 Table S1. Sugar moiety conformation parameters^a of compound 1.

^a Obtained from the ab initio (HF/6-31G**) geometry optimization by Gaussian 98 program.

1