ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Novel dansyl-appended calix[4]arene frameworks: fluorescence properties and mercury sensing

Shubha Pandey,^{a,b} Amir Azam,^{*a} Siddharth Pandey^{*b} and H. M. Chawla,^{*b}

^aDepartment of Chemistry, Jamia Millia Islamia, New Delhi – 110028, India. ^bDepartment of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi – 110016, India.

^{*} To whom the correspondence should be addressed.

E-mail: <u>sipandey@chemistry.iitd.ac.in</u> (SP); Tel: +91-11-26596503

Table of Contents

	Page No.
¹³ C NMR (CDCl ₃) spectra of t-Bu/(OH) ₂ Dan ₂ (Figure S1)	3
¹³ C NMR (CDCl ₃) spectra of NO ₂ /Dan ₄ (Figure S2)	3
Low-temperature ¹ H NMR (CDCl ₃) spectra of NO ₂ /Dan ₄ (Figure S3)	4
¹ H NMR (CDCl ₃) spectra at 32°C, 44°C, and 48°C of NO ₂ /Dan ₄ (Figure S4)	5
Percentage reduction in the fluorescence intensity of NO_2/Dan_4 (1×10 ⁻⁵ M) in the	
presence of 8 μ M each of M ⁿ⁺ and Hg ²⁺ in acetonitrile (Figure S5)	5
Calculation of equilibrium constant (K_{eq}) for NO ₂ /Dan ₄ -Hg ²⁺	6
¹ H NMR (CDCl ₃ , D ₂ O exchanged) spectra of H/(OH) ₂ Dan ₂	8
¹³ C NMR (CDCl ₃) spectra of H/(OH) ₂ Dan ₂	8
¹ H NMR (CDCl ₃) spectra of H/Dan ₄	9
¹³ C NMR (CDCl ₃) spectra of H/Dan ₄	9
¹ H NMR (CDCl ₃) spectra t-Bu/(Ester) ₂ Dan ₂	10
¹³ C NMR (CDCl ₃) spectra t-Bu/(Ester) ₂ Dan ₂	10
¹ H NMR (CDCl ₃) spectra H/(Ester) ₂ Dan ₂	11
¹³ C NMR (CDCl ₃) spectra H/(Ester) ₂ Dan ₂	11
¹ H NMR (CDCl ₃) spectra t-Bu/Dan ₁	12
¹³ C NMR (CDCl ₃) spectra t-Bu/Dan ₁	12
¹ H NMR (CDCl ₃) spectra NO ₂ /Dan ₁	13
¹³ C NMR(CDCl ₃) spectra NO ₂ /Dan ₁	13

Figure S1. ¹³C NMR spectra of **t-Bu/(OH)**₂**Dan**₂ in CDCl₃ at 25°C. (*) represents signal due to residual solvents.

Figure S2. ¹³C NMR spectra of NO_2/Dan_4 in CDCl₃ at 25°C. (*) represents signal due to residual solvents.

Figure S3. Temperature-dependent partial ¹H NMR spectra of **NO₂/Dan₄** in CDCl₃ showing singlet of methylene-bridged protons (peak labeled as *).

Figure S4. ¹H NMR spectra of NO_2/Dan_4 in CDCl₃ at high temperatures. * represents singlet for the methylene-bridged protons.

Figure S5. % reduction in the fluorescence intensity of NO₂/Dan₄ (1×10⁻⁵ M) in the presence of 8 μ M each of Mⁿ⁺ and Hg²⁺ in acetonitrile at ambient conditions ($\lambda_{\text{excitation}} = 351$ nm).

Calculation of Equilibrium Constant (K_{eq}).

$$2NO_{2} / Dan_{4} + Hg^{2+} \xleftarrow{K_{eq}} (NO_{2} / Dan_{4})_{2} Hg^{2+}$$

@ t = 0 [NO_{2} / Dan_{4}]_{0} [Hg^{2+}]_{0} 0

(a)
$$t_{eq}$$
 ([NO₂ / Dan₄]₀ - 2x) ([Hg²⁺]₀ - x) x

where,

$$K_{eq} = \frac{\left[(NO_2 / Dan_4)_2 Hg^{2^+}\right]_{eq}}{\left[NO_2 / Dan_4\right]_{eq}^2 \left[Hg^{2^+}\right]_{eq}}$$
$$K_{eq} = \frac{x}{\left([NO_2 / Dan_4\right]_0 - 2x\right)^2 \left([Hg^{2^+}]_0 - x\right)}$$

Now, assuming

$$[(NO_2 / Dan_4)_2 Hg^{2+}]_{eq} = x = a_1 \Delta F$$

and

$$[(NO_2 / Dan_4)_2]_{eq} = ([NO_2 / Dan_4]_0 - 2x) = a_2F$$

where ΔF and F are the decrease in fluorescence intensity and the fluorescence intensity at the wavelength of analysis, respectively; and a_1 and a_2 are the corresponding proportionality constants. Now,

$$K_{eq} = \frac{a_1 \Delta F}{a_2^2 F^2 ([Hg^{2+}]_0 - a_1 \Delta F)}$$

which rearranges to

$$\frac{1}{F^2} = \left(\frac{K_{eq}a_2^2}{a_1}\right) \frac{[Hg^{2+}]_0}{\Delta F} - K_{eq}a_2^2$$

A plot of $\frac{1}{F^2}$ versus $\frac{[Hg^{2+}]_0}{\Delta F}$ should be linear with slope $=\frac{K_{eq}a_2^2}{a_1}$ and y-intercept $=K_{eq}a_2^2$.

From y-intercept and knowledge of a_2 , K_{eq} is assessed. The parameter a_2 was obtained separately from a linear calibration analysis of $[NO_2 / Dan_4]$ versus F, which provides:

$$[NO_2 / Dan_4] = 2.7(\pm 0.1) \times 10^{-6} F$$
; $r^2 = 0.9996$.

Similarly, linear regression analysis of $\frac{1}{F^2}$ versus $\frac{[Hg^{2+}]_0}{\Delta F}$ provides following expression:

$$\frac{1}{F^2} = 1.6(\pm 0.2) \times 10^5 \frac{[Hg^{2+}]_0}{\Delta F} - 0.38(\pm 0.10); r^2 = 0.9903$$

From, y-intercept = $K_{eq}a_2^2 = 0.38(\pm 0.10)$ and $a_2 = 2.7(\pm 0.1) \times 10^{-6}$ M;

 $K_{eq} = 5.2(\pm 0.8) \times 10^{10} \text{ M}^{-2}$

¹H/¹³C NMR spectra of H/(OH)₂Dan₂, H/Dan₄, t-Bu/(Ester)₂Dan₂, H/(Ester)₂Dan₂, t-

Bu/Dan₁, and NO₂/Dan₁. (*) represents signal due to residual solvents.

