Table S1	UV-visible absorption and f	luorescence spectral data o	of DBASt-4C ₁ , S	$t-2C_1$, and $St-2C_1$	$2C_2$ in the p	resence of
various per	ptide amphiphiles in water; 2	0 °C, pH 10, [dye] = 0.15 r	mM, [amphiphile]] = 3.0 mM.		

	Amphinhila	UV-visil	ble absorption sp	pectral data c	Fluores	scence spec	tral data ^d
Dye	Amphiphile	λ_{max}/nm	Absorbance	Dye species ^a	λ_{ex}/nm	λ_{em}/nm	Intensity ^f
	1	(477) ^b	$(0.402)^b$	M _n	594	(14	224
	1 -	520	0.426	M _i	584	614	224
-	2	464	0.367	Н	554	609	40.7
-	3	498	0.719	Mi	570	609	163
-	4	465	0.453	Н	530	574	22.1
-	-	481	0.537	M _n		(12	276
	5 -	(541) ^b	$(0.267)^b$	Mi	577	612	376
DBASt-4C ₁	7	474	0.441	M _n	557	607	76.3
-	10	541	0.754	M _i	590	612	314
-	44	(468) ^b	$(0.401)^b$	M _n	585	(11	222
		532	0.553	M _i	282	611	323
-	10	472	0.454	M _n		(0.0	
	13 -	(532)	$(0.260)^b$	M _i	571	608	211
-	None (in water)	477	0.502	M _d	547	601	2.0
-	None (in MeOH) ^e	490	0.729	M _d	558	600	7.9
	1	500	0.864	M _i	552	575	406
-	2	491	0.713	M _i	544	572	195
-	3	491	0.764	M _i	549	576	446
-	4	479	0.460	M _i	540	573	177
-	5	504	0.859	M _i	555	576	520
St-2C ₁	7	496	0.712	M _i	549	575	402
-	10	516	0.887	M _i	559	578	605
-	11	510	0.773	M _i	556	576	447
-	13	505	0.824	M _i	554	579	375
-	None (in water)	437	0.401	M _d	513	567	1.3
-	None (in MeOH) ^e	460	0.590	M _d	517	569	3.4
	1	500	0.787	M _i	551	574	367
_	2	490	0.602	M _i	544	574	166
	3	492	0.732	M _i	549	576	404
_	4	481	0.381	M _i	537	572	175
	5	507	0.873	M _i	554	576	684
St-2C ₂	7	474	0.602	M _i	540	572	209
_	10	514	0.861	M _i	556	576	621
_	11	526	0.800	Mi	554	575	544
_	13	506	0.751	Mi	554	577	317
_	None (in water)	434	0.360	M _d	504	566	1.0
_	None (in MeOH) ^e	460	0.536	M _d	525	570	2.9

^{*a*} M_d ; molecularly dispersed monomer of dye . M_i : incorporated monomer of dye. M_n : monomer of dye bound to the carboxylate and not incorporated. H: H-aggregates of dye. Assignment of dye species was made according to pereviously reported method. ^{3c} ^{*b*} Shoulder. ^{*c*} Path length: 0.1 cm. ^{*d*} Path length: 1.0 cm, band width: 1.5 nm. ^{*e*} contains 25 vol% water (MeOH:water = 75:25 v/v). ^{*f*} See footnote *e* of Table 1.

Dye Qu-2C ₁	Amphinhila	UV-visib	le absorption sp	ectral data ^c	Fluorescence spectral dat		
Dye	Amphiphile	λ_{max}/nm	Absorbance	Dye species a	λ_{ex}/nm	λ_{em}/nm	Intensity ^f
Dye Qu-2C ₁	1	567	1.232	M _i	623	643	8.0
	0	459	0.276	Н	(10	(20)	2.5
	2 -	551	0.628	M _i	610	638	5.5
	3	556	1.027	M _i	620	641	16.1
Qu-2C ₁		434	0.588	Н	500	620	
	4 -	531	0.192	M _i	288	630	5.9
	5	571	1.164	M _i	624	642	26.1
	7	432	0.263	Н	600	625	16.0
	/ -	562	0.410	M _i	009	055	10.0
	10	582	1.412	M _i	632	648	25.3
	11	581	1.100	M _i	630	645	17.4
	13	571	1.027	M _i	621	640	16.8
	None (in water)	492	0.391	M _d	571	621	0.9
	None (in MeOH) ^e	524	0.603	M _d	600	632	1.8
	1	569	1.344	M _i	624	643	10.4
	2	448	0.492	Н	(12	638	2.7
	2	556	0.609	M _i	012		
	3	559	1.198	M _i	623	643	18.7
	4 -	435	0.583	Н	504	631	7 4
	-	553	0.264	M _i	394	031	7.4
Qu-2C ₂	5	573	1.430	M _i	628	643	32.4
	7 -	433	0.455	Н	610	634	20.0
	ľ	563	0.552	M _i	010	034	20.0
	10	581	1.469	M _i	630	644	49.9
	11	579	1.425	M _i	629	643	32.1
	13	579	1.425	Mi	626	645	26.9
	None (in water)	490	0.585	M _d	559	605	1.2
	None (in MeOH) ^e	526	0.634	M _d	555	611	1.3

Table S2 UV-visible absorption and fluorescence spectral data of $Qu-2C_1$ and $Qu-2C_2$ (Quinaldine Red) in the presence of various peptide amphiphiles in water; 20 °C, pH 10, [dye] = 0.15 mM, [amphiphile] = 3.0 mM.

^{*a*} M_d : molecularly dispersed monomer of dye. M_i : incorporated monomer of dye. M_n : monomer of dye bound to the carboxylate and not incorporated. H: H-aggregates of dye. Assignment of dye species was made according to pereviously reported method. ^{3c} ^{*b*} Shoulder. ^{*c*} Path length: 0.1 cm. ^{*d*} Path length: 1.0 cm, band width: 1.5 nm. ^{*e*} contains 25 vol% water (MeOH:water = 75:25 v/v). ^{*f*} See footnote *e* of Table 1.

Due	Amphinhile	UV-visible absorption spectral data ^c			Fluores	Fluorescence spectral data ^d		
Dye MDEPAP	Ampinpinie	λ_{max}/nm	Absorbance ^{<i>e</i>}	Dye species a	λ_{ex}/nm	λ_{em}/nm	Intensity ^g	
	1	592	1.251	M _i	-	-	-	
	2	585	0.985	M _i	-	-	-	
	3	587	1.219	M _i	-	-	-	
_	4	562	0.745	M _n	-	-	-	
_	5	597	1.394	Mi	-	-	-	
MDEPAP -	7	579	1.094	Mi	-	-	-	
	10	605	1.229	Mi	-	-	-	
	11	599	1.204	Mi	-	-	-	
_	13	598	1.230	Mi	-	-	-	
	None (in water)	566 (20°C)	0.781	M _d	-	-	-	
		561 (60°C)	0.729	M _d				
	None (in MeOH) f	563	0.940	M _d	-	-	-	

Table S3 UV-visible absorption and fluorescence spectral data of MDEPAP in the presence of various peptide amphiphiles in water; 20 °C, pH 10, [dye] = 0.15 mM, [amphiphile] = 3.0 mM.

^{*a*} M_d : molecularly dispersed monomer of dye. M_i : incorporated monomer of dye. M_n : monomer of dye bound to the carboxylate and not incorporated. H: H-aggregates of dye. Assignment of dye species was made according to pereviously reported method. ^{3c} ^{*b*} Shoulder. ^{*c*} Path length: 0.1 cm. ^{*d*} Path length: 1.0 cm, band width: 1.5 nm. ^{*e*} The λ_{max} of this dye was unfortunately insensitive to solvent polarity. However, molar absorption coefficient was sensitive to solvent polarity, that is, absorbance was increased with decreasing solvent polarity as is observed generally. ^{*f*} contains 25 vol% water (MeOH:water = 75:25 v/v). ^{*g*} See footnote *e* of Table 1.

Table S4 UV-visible absorption and fluorescence spectral data of DEC in the presence of various peptide amphiphiles in water; $20 \degree C$, pH 10, [dye] = 0.15 mM, [amphiphile] = 3.0 mM.

	Amphinhile	UV-visib	le absorption sp	ectral data ^c	Fluore	scence spec	tral data ^d
Dye	Ampinpine	λ_{max}/nm	Absorbance	Dye species a	λ_{ex}/nm	λ_{em}/nm	Intensity ³
		(461) ^b	$(0.245)^b$				
	1	493	0.690	M _n	554	574	4.0
		529	1.189				
		443	0.452	Н			
	2	491	0.276		568	596	2.6
		529	0.345	— M _n			
		(459) ^b	$(0.232)^b$				
	3	492	0.623	M _n	549	576	1.3
		526	1.006				
		(458) ^b	$(0.054)^b$				
		(491) ^b	$(0.157)^b$	M _n			
	4	527	0.251		569	590	140
		556	0.181	J			
		582	0.401	J			
		(456) ^b	$(0.286)^b$				
	5	491	0.763	Mi	553	571	7.6
		527	1.365				
		(458) ^b	$(0.157)^b$				
DEC		491	0.423				
	7	525	0.690	11	566	591	96.3
		556	0.315	J			
		580	1.010	J			
		460	0.238			563	84.7
	10	492	0.682	Mi	549		
		530	1.614				
		460	0.227				
	11	491	0.672	Mi	549	563	42.8
		530	1.597				
		459 ^b	0.195 ^b				
	13	493	0.477	M _n	552	567	4.6
		532	0.965				
		(456) ^b	$(0.204)^{b}$				
		489	0.537	M _d	550		1.2
	None (in water)	523	0.712		553	575	1.3
	·	578	0.0261	J			
		(457) ^b	$(0.243)^b$				
	None (in MeOH) ^e	490	0.702	M _d	559	573	1.3
		523	1.044				

^{*a*} M_d : molecularly dispersed monomer of dye. M_i: incorporated monomer of dye. M_n: monomer of dye bound to the carboxylate and not incorporated. J: J-aggregates of dye: J-aggregation is a result of non-incorporation of less planar dyes. H: H-aggregates of dye. Assignment of dye species was made according to pereviously reported method. ^{3c} ^{*b*} Shoulder. ^{*c*} Path length: 0.1 cm. ^{*d*} Path length: 1.0 cm, band width: 1.5 nm. ^{*e*} contains 25 vol% water (MeOH:water = 75:25 v/v). ^{*f*} See footnote *e* of Table 1.

	A 1 1 1 1	UV-visit	ole absorption sp	ectral data ^c	Fluores	cence spect	ral data ^d
Dye	Amphiphile	λ_{max}/nm	Absorbance	Dye species a	λ_{ex}/nm	λ_{em}/nm	Intensity f
		532	0.349				
	1	577	0.662	Mi	655	664	8.0
		629	1.591				
		521	0.544	Н			
	2	(569) ^b	(0.331) ^b	Н	632	645	1.7
		612	0.208	M _n			
		476	0.699	Н			
	3	572	0.266		618	654	11.6
		618	0.423	— M _i			
	4	503	0.380	Н			
		(570) ^b	(0.192) ^b	Н	633	642	16.5
		611	0.162	M _i			
		(532) ^b	(0.181) ^b				
	5	583	0.735	M	666	673	45.0
DECC		637	2.020				
	7	507	0.348	Н	641		
		563	0.245	Н		648	26.8
		612	0.283	M _i			
		(534) ^b	$(0.164)^b$			673	61.1
	10	586	0.786	M _i	666		
		637	2.120				
		(530) ^b	$(0.123)^b$				
	11	584	0.613	M _i	663	669	62.0
		636	2.047				
		523	0.455	Н			
	None (in water)	544	0.483	Н	588	627	1.4
		599	0.262	M _d			
		(520) ^b	$(0.248)^{b}$				
	None (in MeOH) ^e	561	0.998	M _d	638	648	1.3
		603	1.932				

Table S5 UV-visible absorption and fluorescence spectral data of DECC in the presence of various peptide amphiphiles in water; 20 °C, pH 10, [dye] = 0.15 mM, [amphiphile] = 3.0 mM.

^{*a*} M_d: molecularly dispersed monomer of dye. M_i: incorporated monomer of dye. M_n: monomer of dye bound to the carboxylate and not incorporated. J: J-aggregates of dye: J-aggregation is a result of non-incorporation of less planar dyes. H: H-aggregates of dye. Assignment of dye species was made according to pereviously reported method. ^{3c} ^{*b*} Shoulder. ^{*c*} Path length: 0.1 cm. ^{*d*} Path length: 1.0 cm, band width: 1.5 nm. ^{*e*} contains 25 vol% water (MeOH:water = 75:25 v/v). ^{*f*} See footnote *e* of Table 1.

	Amphinhila	UV-	visible absorptio	n spectral data ^c	Fluores	cence spect	ral data ^d
Dye	Ampinpine	λ_{max}/nm	Absorbance	Dye species a	λ_{ex}/nm	λ_{em}/nm	Intensity ^f
	4	542	0.652	М	(01	(07	202
		581	1.814	— M _i	601	607	202
		(471) ^b	$(0.245)^{b}$	Н			5.0
	2	(536) ^b	$(0.433)^b$	Н	588	631	
		573	0.524	M _n			
	3 -	(539) ^b	$(0.862)^b$	— M.	601	607	268
		574	1.489	¹¹¹ 1	001	007	200
	4	476	0.345	Н	580	592	13.1
		560	0.576	M _n	580	392	13.1
	5	(541) ^b	$(0.613)^b$	— M.	604	609	444
DETCC		582	1.748	¹⁰¹ 1	004	007	-
		$(470)^{b}$	$(0.359)^b$	Н		602	46.7
	7	$(523)^{b}$	$(0.568)^b$	Н	594		
		563	0.814	Mi			
	10	546	0.540	M.	605	610	381
		586	1.835	¹¹¹ 1	005	010	501
	11	545	0.537	M·	603	600	550
		584	1.846		005	009	
	None (in water)	509	0.495	Н	570	577	10.8
		553	0.501	M _d	570	5//	19.8
	None (in MeOH) e	(523) ^b	(0.605) ^b	— M.	578	594	34.8
		557	1.345	— M _d	510	504	

Table S6 UV-visible absorption and fluorescence spectral data of DETCC in the presence of various peptide amphiphiles in water; 20 °C, pH 10, [dye] = 0.15 mM, [amphiphile] = 3.0 mM.

^{*a*} M_d : molecularly dispersed monomer of dye. M_i : incorporated monomer of dye. M_n : monomer of dye bound to the carboxylate and not incorporated. H: H-aggregates of dye. Assignment of dye species was made according to pereviously reported method. ^{3c} ^{*b*} Shoulder. ^{*c*} Path length: 0.1 cm. ^{*d*} Path length: 1.0 cm, band width: 1.5 nm. ^{*e*} contains 25 vol% water (MeOH:water = 75:25 v/v). ^{*f*} See footnote *e* of Table 1.

Dye	Amphinhila	UV-visib	le absorption spo	ectral data c	Fluorescence spectral data ^d		
	Amphiphile	λ_{max}/nm	Absorbance	Dye species a	λ_{ex}/nm	λ_{em}/nm	Intensity f
Dye	1	543	0.655	M	602	600	151
		582	1.795	— M _i	603	609	151
Dye — — — — — — — — — — — — — — — — — — —	2	536	0.474	— M M·	506	606	11.1
	E	577	0.698	in, in	390	000	11.1
	2	(538) ^b	$(0.611)^b$	M	601	609	208
	3	576	1.286	— M _i	001	008	298
	4	470	0.509	Н	505	635	4.1
	4	570	0.774	M _n	383	635	
5 5 7 6 6	5	(543) ^b	$(0.720)^b$	M·	609	612	270
	5	568	0.262	<u> </u>	608	015	370
DPICC	7 -	(528) ^b	$(0.480)^b$	— M _n , M _i	504	(02	13.0
		566	1.000		594	603	
	10	549	0.980	— M.	612	601	64.8
	10	584	2.097		015	021	
		(546) ^b	$(0.725)^b$	М	600	615	
		587	1.960		009	015	95.8
	10	(534) ^b	$(0.265)^b$	М.	540	601	055
	13	584	0.495	i	540	601	83.3
	Non (in motor)	514	0.164	Н	565	572	52.0
	None (in water)	555	0.241	M _d	202	3/3	55.9
	None (in McOII) ^e	(524) ^b	(0.581) ^b	M	500	500	
		559	1.317	d	285	389	33.7

Table S7 UV-visible absorption and fluorescence spectral data of DPTCC in the presence of various peptide amphiphiles in water; 20 °C, pH 10, [dye] = 0.15 mM, [amphiphile] = 3.0 mM.

^{*a*} M_d : molecularly dispersed monomer of dye. M_i : incorporated monomer of dye. M_n : monomer of dye bound to the carboxylate and not incorporated. H: H-aggregates of dye. Assignment of dye species was made according to pereviously reported method. ^{3c} ^{*b*} Shoulder. ^{*c*} Path length: 0.1 cm. ^{*d*} Path length: 1.0 cm, band width: 1.5 nm. ^{*e*} contains 25 vol% water (MeOH:water = 75:25 v/v). ^{*f*} See footnote *e* of Table 1.

Dye	Amphinhile	UV-visib	le absorption spe	ectral data ^c	Fluores	scence spect	tral data ^d
	Ampinpinie	λ_{max}/nm	Absorbance	Dye species ^a	λ_{ex}/nm	λ_{em}/nm	Intensity f
	_	531	0.733	М	501	506	246
	1	567	2.009	— M _i	591	596	240
Dye Dye DE9MTCC	0	526	0.824	M.	590	506	2 2.0
	2	567	1.952	i	589	596	23.8
_	2	$(529)^{b}$	$(0.896)^b$	M.	500	596	780
-	3	562	1.733	111	390	590	789
		$(499)^{b}$	$(0.615)^b$	Н			203
	4	536	1.040	M.	584	591	
- DE9MTCC		569	1.364	111			
	5	$(530)^{b}$	$(0.607)^b$	— M.	594	600	561
	Ū	571	1.887	141	M ₁ 574	000	501
	7	$(493)^{b}$	$(0.392)^b$	Н	588		
		530	0.712	M·		593	219
		568	1.660	1111			
	10	534	0.778	— M	502	509	100
	10	567	2.004	wi	392	590	402
	11	533	0.733	— M	502	507	(0)(
_	11	566	1.996	wi	591 589 590 584 594 588 592 592 592 492 556 573	391	090
	12	533	0.701	— M	402	506	178
-	15	568	1.978	Mi	492	590	178
	None (in water)	500	0.362	Н	556	560	2.4
	none (in water)	539	0.289	M _d	550	202	2.4
-	None (in MeOH) ^{e}	(504) ^b	(0.569) ^b	M	572	502	2.2
		541	1.635	$ \mathbf{w}$	515	202	2.2

Table S8 UV-visible absorption and fluorescence spectral data of DE9MTCC in the presence of various peptide amphiphiles in water; 20 °C, pH 10, [dye] = 0.15 mM, [amphiphile] = 3.0 mM.

^{*a*} M_d: molecularly dispersed monomer of dye. M_i: incorporated monomer of dye. M_n: monomer of dye bound to the carboxylate and not incorporated. J: J-aggregates of dye: J-aggregation is a result of non-incorporation of less planar dyes. H: H-aggregates of dye. Assignment of dye species was made according to pereviously reported method. ^{3c} ^{*b*} Shoulder. ^{*c*} Path length: 0.1 cm. ^{*d*} Path length: 1.0 cm, band width: 1.5 nm. ^{*e*} contains 25 vol% water (MeOH:water = 75:25 v/v). ^{*f*} See footnote *e* of Table 1.

	Amphinhila	UV-v	visible absorptic	on spectra ^c	Flu	lorescence	spectra ^d	
Dye	Ampinpine	λ_{max}/nm	Absorbance	Dye species ^a	λ_{ex}/nm	λ_{em}/nm	Intensity f	
		533	0.772		50.4	(00	200	
	1	569	2.012	— M _i	594	600	300	
Dye DE9ETCC (NK-737)	2	533	0.782	M	504	(00		
	2	569	2.016		594	600	44.4	
-		$(530)^{b}$	$(0.814)^b$	М.				
	3	570	1.887		617	619	306	
		(615) ^b	$(0.112)^b$	J				
		(491) ^b	$(0.517)^b$	Н				
	Λ	566	1.084	M _i	591	500	40.1	
	4	$(602)^{b}$	$(0.254)^b$	J	581	288	40.1	
		(638) ^b	$(0.041)^b$	J				
-	5	(535) ^b	$(0.814)^b$	М	500	(05	202	
DE9ETCC	5	574	1.942	— M _i	399	605	292	
(NK-737)	7	(491) ^b	$(0.349)^b$	Н	597	500	10.2	
	7	556	0.966	M _i	587	592	47.3	
_	10	537	0.742	М	507	602	250	
	10	572	2.024	<u> </u>	397	003		
_	11	537	0.666	M	506	(02	207	
		572	2.006		390	002	300	
-		497	0.382	Н				
	10	531 ^b	0.449^{b}		(0)	(10		
	13	577	1.087	— M _i	602	619	55.5	
		612	0.462	J				
-	None (in water)	505	0.420	Н				
		543	0.334	M _d	564	574	2.6	
		630	0.040	J				
-	N. (: M. om) ^e	(507) ^{b)}	(0.357) ^b		5 07	700		
	None (in MeOH)	546	1.115	— M _d	586	586 598		

Table S9 UV-visible absorption and fluorescence spectral data of DE9ETCC (NK-737) in the presence of various peptide amphiphiles in water; 20 °C, pH 10, [dye] = 0.15 mM, [amphiphile] = 3.0 mM.

^{*a*} M_d : molecularly dispersed monomer of dye. M_i: incorporated monomer of dye. J: J-aggregates of dye: J-aggregation is a result of non-incorporation of less planar dyes. H: H-aggregates of dye. Assignment of dye species was made according to pereviously reported method. ^{3c} ^{*b*} Shoulder. ^{*c*} Path length: 0.1 cm. ^{*d*} Path length: 1.0 cm, band width: 1.5 nm. ^{*e*} contains 25 vol% water (MeOH:water = 75:25 v/v). ^{*f*} See footnote *e* of Table 1.