Synthesis, X-ray crystal structures, and computational studies of 1,1'-bridged 4,4'-diaryl-2,2'-bibenzimidazoles: building blocks for supramolecular structures

Derik K. Frantz, Ashley A. Sullivan, Yoshizumi Yasui, Anthony Linden, Kim K. Baldridge,* and Jay S. Siegel*

General

Unless otherwise noted, all reactions were performed under nitrogen. Anhydrous THF was supplied from an Mbraun solvent purification system. Solvents were used as purchased (p. a. grade) without further purification. All reagents were also used as purchased without further purification. Analytical thin layer chromatography was performed with Macherey-Nagel POLYGRAM ALOX N/UV₂₅₄. Alumina chromatography was performed with deactivated (5% water) Sigma-Aldrich activated aluminum oxide (Type 507C, 150 mesh).

Proton nuclear magnetic resonance (¹H-NMR) spectra were recorded on a Bruker Avance 300 at 300 MHz, a Bruker ARX 300 at 300 MHz, or a Bruker Avance 400 at 400 MHz. Chemical shifts are reported relative to SiMe₄ (0.00 ppm), CHCl₃ (7.26 ppm), or DMSO (2.54 ppm). Multiplicity is indicated by one or more of the following: s (singlet); d (doublet); t (triplet); quint (quintet); m (multiplet); br (broad). Carbon nuclear magnetic resonance (¹³C-NMR) spectra were recorded on a Bruker ARX 300 at 75 MHz, on a Bruker Avance 400 at 100 MHz or on a Bruker Avance 500 at 125 MHz. Chemical shifts are reported relative to CDCl₃ (77.2 ppm) or DMSO-*d*₆ (39.5 ppm).

4,4'-bis(4-methoxyphenyl)-6,6'-dimethyl-2,2'-bibenzimidazole 2a. To a solution of **1a** (2.18 g, 3.23 mmol) in CH₂Cl₂ (30 mL) was slowly added trifluoroacetic acid (3.5 mL, 5.2 g, 46 mmol). The reaction mixture was stirred 90 min in air at room temperature. Saturated NaHCO₃ solution was then added until the reaction mixture tested pH \approx 8 on indicator paper, at which point a white precipitate formed. A 1:1 mixture of ether and hexane was added to the quenched reaction mixture, which was allowed to stir for an additional 10 min before the precipitate was filtered and washed with water and hexane, and dried in vacuo. Compound **2a** (1.46 g, 95%) was produced as a white powder. Rf 0.18 (CH₂Cl₂); mp. decomp. 299-300°C; ¹H NMR (300 MHz, DMSO-*d*₆, δ) 13.04 (br s, 2H), 8.13 (br d, 4H, *J* = 7.2 Hz), 7.32 (s, 2H), 7.24 (s, 2H), 7.08 (d, 4H, *J* = 8.7 Hz), 3.85 (s, 6H), 2.50 (s, embedded in solvent peak) ; ¹³C NMR (100 MHz, DMSO-*d*₆, 353 K, δ) 158.4, 143.4, 138.6, 136.6, 132.3, 130.5, 129.8, 129.5, 121.8, 113.5, 110.6, 54.9, 21.0; HRMS (ESI) Calcd for C₃₀H₂₆N₄O₂Na (M + Na⁺) 497.1953, found 497.1957.

4,4'-bis(4-methoxyphenyl-2,6-dimethyl)-6,6'-dimethyl-2,2'-bibenzimidazole 2b To a solution of **1b** (2.00 g, 2.74 mmol) in CH₂Cl₂ (30 mL) was slowly added trifluoroacetic acid (3.5 mL, 5.2 g, 46 mmol). The reaction mixture was stirred for 3 h in air at room temperature. Saturated NaHCO₃ solution was then added until the reaction mixture tested pH \approx 8 on indicator paper, at which point a white precipitate formed. Hexane was added and the mixture was stirred before the precipitate was filtered, washed with water and hexane, and dried in vacuo. Compound **2b** (1.40 g, 96 %) was produced as a white powder. Rf 0.46 (CH₂Cl₂); mp. >320° C; ¹H NMR (300 MHz, DMSO-*d*₆, δ) 13.13 (br s, 2H), 7.25 (s, 2H), 6.73 (s, 6H (4H + 2H)), 3.79 (s, 6H), 2.43 (s, 6H), 1.92 (s, 12H); ¹³C NMR (125 MHz, DMSO-*d*₆, 350 K, δ) 158.0, 144.2, 139.3, 137.3, 131.8, 131.8, 131.3,

129.7, 112.4, 111.5, 54.8, 21.0, 20.3; HRMS (ESI) Calcd for $C_{34}H_{34}N_4O_2Na$ (M + Na⁺) 553.2579, found 553.2578.

6,11-Dihydro-1,16-bis(4-methoxyphenyl)-3,14-dimethylbisbenzimidazo[1,2-b:2',1'*d*]**[2,5]benzodiazocine 3a**. To a solution of of **2a** (299 mg, 629 µmol) in THF (30 mL) was added Cs₂CO₃ (621 mg, 1.90 mmol), α, α' -dibromo-*o*-xylene (247 mg, 936 mmol), and NaI (97 mg, 647 mmol). The reaction mixture was then stirred under nitrogen at 70 °C for 19 h. Water was added to the reaction mixture and the THF was removed in vacuo, causing a yellow solid to precipitate. Hexane and a small amount of THF (to dissolve yellow byproduct) were added to the water and the two-phase mixture containing a white precipitate was allowed to stir for 30 minutes. The precipitate was then filtered and washed with water and hexane, leaving a white powder. Recrystallization with CH₂Cl₂ / hexane afforded **3a** (260 mg, 72%) as clear crystals. Rf 0.70 (CH₂Cl₂); mp. >320°C; ¹H NMR (300 MHz, CDCl₃, δ) 8.08 (d, 4H, J = 9.0 Hz), 7.44 (m, 4H), 7.30 (br s, 2H), 7.11 (br s, 2H), 7.04 (d, 4H, J = 9.0 Hz) 5.13 (s, 4H), 3.86 (s, 6H), 2.53 (s, 6H); ¹³C NMR (75 MHz, CDCl₃, δ) 159.2, 144.5, 139.4, 136.1, 134.4, 133.7, 133.0, 130.4, 129.7, 129.0, 123.5, 113.9, 107.8, 55.3, 48.4, 21.9; HRMS (ESI) Calcd for C₃₈H₃₂N₄O₂Na (M+Na⁺) 599.2423, found 599.2428.

6,11-Dihydro-1,16-bis(4-methoxyphenyl-2,6-dimethyl)-3,14-dimethylbisbenzimidazo-[**1,2-b:2',1'-d**][**2,5]benzodiazocine 3b.** To a solution of **2b** (200 mg, 0.377 mmol) in THF (40 mL) were added Cs₂CO₃ (365 mg, 1.12 mmol), α , α '-dibromo-*o*-xylene (149 mg, 0.565 mmol) and NaI (58 mg, 0.37 mmol). The reaction was stirred under nitrogen at 60 °C for 7 d. Water was then added and the mixture was stirred. The resulting precipitate was filtered and washed with water and hexane. Alumina column chromatography (hexane/CH₂Cl₂ = 9:1 \rightarrow 5:5) afforded **3b** (185 mg, 78%). Rf 0.72 (CH₂Cl₂); mp. >320°C; ¹H NMR (300 MHz, CDCl₃) δ) 7.47 (m, 4H), 7.15 (br s, 2H), 6.93 (br s, 2H), 6.67 (s, 4H), 5.10 (s, 4H), 3.80 (s, 6H), 2.51 (s, 6H), 2.00 (s, 12H); ¹³C NMR (75 MHz, CDCl₃ δ) 158.8, 144.7, 140.7, 138.1, 135.5, 134.3, 134.1, 133.8, 130.6, 130.1, 129.3, 126.4, 113.0, 108.1, 55.3, 48.6, 22.0, 21.4; HRMS (ESI) Calcd for C₄₂H₄₀N₄O₂Na (M + Na⁺) 655.3049, found 655.3050.

7,8-Dihydro-1,13-bis(4-methoxyphenyl)-3,11-dimethyl-6H-benzimidazo[2',1':3,4]-[1,4]diazepino[1,2-*a***]benzimidazole 3c**. To a solution of **2a** (300 mg, 0.632 mmol) in THF (30 mL) were added Cs₂CO₃ (620 mg, 1.90 mmol), 1,3-dibromopropane (642 mg, 3.12 mmol) in THF (20 mL) and NaI (94 mg, 0.63 mmol). The reaction was stirred under nitrogen at 65 °C for 22 h. The reaction mixture was then added to a biphasic mixture of water and hexane, stirred and filtered. The precipitate was collected and dried in vacuo to give 3c as a white powder (242 mg, 75%). Rf 0.19 (CH₂Cl₂); mp. decomp. 310-311°C; ¹H NMR (300 MHz, CDCl₃, δ) 8.03 (d, 4H, *J* = 8.7 Hz), 7.27 (br s, 2H), 7.11 (br s, 2H), 6.93 (d, 4H, *J* = 8.7 Hz) 4.37 (t, 4H, *J* = 6.2 Hz), 3.84 (s, 6H), 2.62 (quint, 2H, *J* = 6.2 Hz), 2.56 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, δ) 159.3, 143.5, 138.9, 136.5, 134.5, 132.7, 130.7, 130.6, 123.7, 113.9, 107.8, 55.5, 42.8, 28.2, 22.3; HRMS (ESI) Calcd for C₃₃H₃₀N₄O₂Na (M + Na⁺) 537.2266, found 537.2268.

7,8-Dihydro-1,13-bis(4-methoxyphenyl-2,6-dimethyl)-3,11-dimethyl-6H-benzimid-

azo[2',1':3,4][1,4]diazepino[1,2-*a*]-benzimidazole 3d. To a solution of 2b (201 mg, 0.379 mmol) in THF (30 mL) were added Cs₂CO₃ (304 mg, 0.933 mmol), 1,3-dibromopropane (160 μL, 317 mg, 1.57 mmol) and NaI (61 mg, 0.41 mmol). The mixture was stirred under nitrogen for 5 days at 70 °C. Water was added and THF was selectively removed in vacuo. Hexane was added to the water mixture and a white precipitate was filtered and dried in vacuo. Alumina column chromatography (CH₂Cl₂/hexane = 5:5) afforded 3d as a white powder. Rf 0.64 (CH₂Cl₂); mp. >320°C; ¹H NMR (400 MHz, CDCl₃ δ) 7.17 (s, 2H), 6.90 (s, 2H), 6.61 (s, 4H), 4.34 (t, 4H, *J* = 6.4 Hz), 3.76 (s, 6H),

2.61 (quint, 2H, J = 6.2 Hz) 2.53 (s, 6H), 1.98 (s, 12H); ¹³C NMR (100 MHz, CDCl₃ δ) 158.7, 144.3, 140.6, 138.2, 135.9, 134.0, 133.7, 130.9, 126.5, 112.9, 107.8, 55.3, 41.9, 28.7, 22.1, 21.4; HRMS (ESI) Calcd for C₃₇H₃₈N₄O₂Na (M + Na⁺) 593.2892, found 593.2896.

7,8-Dihydro-1,13-bis(4-methoxyphenyl)-3,11-dimethyl-6H-benzimidazo[2',1':3,4] [1,4]diazino[1,2-*a***]benzimidazole 3e. To a solution of 2a (299 mg, 0.629 mmol) in 50 mL were added Cs₂CO₃ (616 mg, 1.89 mmol), 1-bromo-2-chloroethane (404 mg, 2.83 mmol) in 20 mL THF and NaI (98 mg, 0.65 mmol). The reaction was stirred under nitrogen at 65 °C for 7 d. The reaction mixture was cooled to rt and water was added. The mixture was allowed to stir for 20 min, and the resulting precipitate was filtered and dried under vacuum. Recrystallization from DMF afforded 3e as white crystals (209 mg, 66% yield). Rf 0.28 (CH₂Cl₂); mp. >320°C; ¹H NMR (300 MHz, DMSO-***d***₆, \delta) 8.10 (d, 4H,** *J* **= 9.0 Hz), 7.51 (br s, 2H), 7.35 (br s, 2H), 7.14 (d, 4H,** *J* **= 9.0 Hz), 4.81 (s, 4H), 3.88 (s, 6H), 2.58 (s, 6H); ¹³C NMR (100 MHz, DMSO-***d***₆, 350K) \delta) 158.6, 140.8, 139.0, 134.9, 133.2, 131.0, 131.1, 129.6, 122.4, 113.6, 108.3, 54.9, 21.0; HRMS (ESI) Calcd for C₃₂H₂₈N₄O₂Na (M + Na⁺) 523.2110, found 523.2117.**

7,8-Dihydro-1,13-bis(4-methoxyphenyl-2,6-dimethyl)-3,11-dimethyl-6H-benzimid-

azo[2',1':3,4][1,4]diazino[1,2*a***]benz-imidazole 3f.** To a solution of **2b** (200 mg, 0.377 mmol) in THF (30 mL) was added Cs₂CO₃ (492 mg, 1.51 mmol). To this solution were added 1-bromo-2-chloroethane (249 μL, 431 mg, 3.01 mmol) and NaI (56 mg, 0.373 mmol). The mixture was stirred under nitrogen for 10 days at 60 °C. Water was added and the mixture was allowed to stir for 30 min. The resulting precipitate was washed with water and hexane and dried in vacuo. Trituration in THF afforded **3f** as a white powder (90 mg, 43%). Rf 0.58 (CH₂Cl₂); mp. >320°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ) 7.48 (s, 2H), 6.85 (s, 2H), 6.69 (s, 4H), 4.76 (s, 4H), 3.76 (s, 6H), 2.51 (s, embedded in solvent signal), 1.89 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ) 158.8, 141.3, 141.2, 138.1, 134.7, 134.4, 133.9, 130.9, 126.8, 112.9, 107.8, 55.32, 40.7, 22.1, 21.3; HRMS (ESI) Calcd for $C_{36}H_{36}N_4O_2Na$ (M + Na⁺) 579.2736, found 579.2746.

6,11-Dihydro-1,16-dibromo-3,14-dimethylbisbenzimidazo[1,2-b:2',1'-d][2,5]benzo-

diazocine 5a. To a solution of 4,4'-dibromo-6,6'-dimethyl-BBI⁷ (568 mg, 1.19 mmol) in DMF (100 mL) was added K₂CO₃ (512 mg, 3.89 mmol) and the mixture was allowed to stir 15 min before α, α' -dibromo-*o*-xylene (658 mg, 2.39 mmol) was added. The mixture was headed to 60 °C for 21 h, then cooled to room temperature. Water (100 mL) was then added and the mixture was stirred for 30 min, during which time a white, gelatinous precipitate formed. The precipitate was filtered and washed with water and hexane and dried *in vacuo* to yield **5** as a dull white powder (621 mg, 88%). Rf (compound does not elute in hexane, toluene, CHCl₃, CH₂Cl₂, EtOAc, MeOH, EtOH, or water). m.p. >300°C; ¹H NMR (300 MHz, CDCl₃) δ) 7.46 (m, 4H), 7.41 (s, 2H), 7.15 (s, 2H), 5.13 (br s, 4H), 2.49 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ) 140.5, 138.5, 135.8, 133.7, 129.8, 129.3, 127.9, 108.7, 67.2, 59.0, 48.7, 21.5; LRMS (EI): m/z = 522.0 100% (M⁺). Anal. Calcd for C₂₄H₁₈Br₂H₄: C, 55.2; H, 3.47; N, 10.73. Found: C, 54.68; H, 3.36; N, 10.68.

7,8-Dihydro-1,13-dibromo-3,11-dimethyl-6H-benzimidazo[2',1':3,4][1,4]diazepino-

[1,2-*a*]benzimidazole 5b. To a solution of 4,4'-dibromo-6,6'-dimethyl-BBI⁷ (1.52 g, 3.59 mmol) in DMF (300 mL) was added K_2CO_3 (1.54 g, 10.8 mmol) and the mixture was allowed to stir 15 min before 1,3-dibromopropane (1.8 mL, 18 mmol) was added. The mixture was headed to 60 °C for 22 h, then cooled to room temperature. Water (250 mL) was then added and the mixture was stirred for 30 min, during which time a white, gelatinous precipitate formed. The precipitate was filtered and washed with water and hexane and dried *in vacuo* to yield **5b** as a dull white powder (1.11 g, 67%). Rf (compound does not elute in hexane, toluene, CHCl₃, CH₂Cl₂, EtOAc, MeOH, EtOH, or

water). m.p. >300°C; ¹H NMR (300 MHz, DMSO- d_6 , δ) 7.52 (s, 2H), 7.40 (s, 2H), 4.53 (t, 4H, J = 4.0 Hz), 2.58 (m, 2H) 2.49 (s, 6H); ¹³C NMR (100 MHz, DMF- d_7 , sample dissolved at 90 °C, spectra acquired immediately at 300 K, δ) 137.9, 137.2, 128.1, 126.0, 122.5, 113.7, 111.2, 45.6, 27.8, 21.8; LRMS (EI): m/z = 460.1 100% (M⁺).

7,8-Dihydro-1,13-dibromo-3,11-dimethyl-6H-benzimidazo [2',1':3,4][1,4]diazino[1,2*a*]benzimidazole 5c. To a solution of 4,4'-dibromo-6,6'-dimethyl-BBI⁷ (49.8 mg, 0.12 mmol) in DMF (10 mL) was added K₂CO₃ (54 mg, 0.36 mmol) and the mixture was allowed to stir 15 min before 1-bromo-2-chloroethane (0.05 mL, 0.6 mmol) was added. The mixture was headed to 60 °C for 4 d, then cooled to room temperature. Water (50 mL) was then added and the mixture was stirred for 30 min, during which time a white, gelatinous precipitate formed. The precipitate was filtered and washed with water and hexane and dried *in vacuo* to yield **5b** as a dull white powder (32 mg, 6%). Rf (compound does not elute in hexane, toluene, CHCl₃, CH₂Cl₂, EtOAc, MeOH, EtOH, or water). m.p. >300°C; ¹H NMR (300 MHz, DMF-*d*₇, sample dissolved at 90 °C, spectra acquired immediately at 300 K, δ) 7.58 (s, 2H), 7.43 (s, 2H), 4.91 (s, 4H), 2.53 (s, 6H), 2.58 (s, 6H); ¹³C NMR (100 MHz, DMF-*d*₇, sample dissolved at 90 °C, spectra acquired immediately at 300 K, δ) 136.6, 135.3, 130.8, 128.4, 120.8, 113.8, 111.2, 43.8, 21.8; LRMS (EI): m/z = 446.0 100% (M⁺).

Crystal data

Compound **3a** (obtained from CH₂Cl₂/hexane): C₃₈H₃₂N₄O₂, M = 576.70, space group: $P\overline{1}$ (triclinic), a = 10.2157(3) Å, b = 11.9363(5) Å, c = 12.9452(5) Å, $\alpha = 66.518(2)^{\circ}$, $\beta = 89.148(2)^{\circ}$, $\gamma = 86.525(2)^{\circ}$, V = 1445.05(9) Å³, Z = 2, F(000) = 608, μ (Mo $K\alpha) = 0.0830$ mm⁻¹, Dx = 1.325 g cm⁻³, $2\theta_{(max)} = 60^{\circ}$, T = 160 K, 36774 measured reflections, 8408 independent reflections, 5233 reflections with $I > 2\sigma(I)$, refinement on F^2 with SHELXL97, 402 parameters, R(F) [$I > 2\sigma(I)$ reflections] = 0.0615, $wR(F^2)$ [all data] = 0.1543, goodness of fit = 1.047, $\Delta \rho_{max} = 0.33 e$ Å⁻³.

Compound **3b** • acetone (obtained from CH₂Cl₂/acetone): C₄₅H₄₆N₄O₃, M = 690.88, space group: $P2_1/c$ (monoclinic), a = 21.4622(3) Å, b = 7.4031(1) Å, c = 23.7326(3) Å, $\beta = 94.2256(9)^{\circ}$, V = 3760.55(9) Å³, Z = 4, F(000) = 1472, μ (Mo K α) =0.0767 mm⁻¹, Dx = 1.220 g cm⁻³, $2\theta_{(max)} = 55^{\circ}$, T = 160 K, 86943 measured reflections, 8633 independent reflections, 5874 reflections with $I > 2\sigma(I)$, refinement on F^2 with SHELXL97, 480 parameters, R(F) [$I > 2\sigma(I)$ reflections] = 0.0770, $wR(F^2)$ [all data] = 0.2173, goodness of fit = 1.066, $\Delta \rho_{max} = 0.66 e$ Å⁻³.

Compound **3c** · CH₂Cl₂ (obtained from CH₂Cl₂/hexane): C₃₄H₃₂Cl₂N₄O₂, M = 599.56, space group: $P2_1/c$ (monoclinic), a = 12.7522 (2) Å, b = 22.9038(4) Å, c = 10.1324(2) Å, $\beta = 106.800(1)^\circ$, V = 2833.11(9) Å³, Z = 4, F(000) = 1256, μ (Mo K α) = 0.269 mm⁻¹ Dx = 1.406 g cm⁻³, $2\theta_{(max)} = 55^\circ$, T = 160 K, 57343 measured reflections, 6474 independent reflections, 4378 reflections with $I > 2\sigma(I)$, refinement on F^2 with SHELXL97, 384 parameters, R(F) [$I > 2\sigma(I)$ reflections] = 0.0703, $wR(F^2)$ [all data] = 0.2237, goodness of fit = 1.036, $\Delta \rho_{max} = 1.20 e$ Å⁻³.

Compound **3d** • 2 CH₂Cl₂ (obtained from CH₂Cl₂/hexane): C₃₉H₄₂Cl₄N₄O₂, M = 740.60, space group: *Pbca* (orthorhombic), a = 20.2497(2) Å, b = 14.7082(2) Å, c = 24.9430(4) Å, V = 7428.9(2) Å³, Z = 8, F(000) = 3104, μ (Mo K α) = 0.538 mm⁻¹ Dx = 1.324 g cm⁻³, $2\theta_{(max)} = 55^{\circ}$, T = 160 K, 89418 measured reflections, 8506 independent reflections, 6208 reflections with $I > 2\sigma(I)$, refinement on F^2 with SHELXL97, 451 parameters, R(F) [$I > 2\sigma(I)$ reflections] = 0.0538, $wR(F^2)$ [all data] = 0.1457, goodness of fit = 1.057, $\Delta\rho_{max} = 1.057$, $\Delta\rho_{max$

0.40 $e \text{ Å}^{-3}$.

Compound **3e** (obtained from DMF): $C_{32}H_{28}N_4O_2$, M = 500.60, space group: C2/c (monoclinic), a = 23.0441(8) Å, b = 12.4981(5) Å, c = 17.4616(6) Å, $\beta = 98.296(3)^{\circ}$, V = 4976.4(3) Å³, Z = 8, F(000) = 2112, μ (Mo $K\alpha$) = 0.0850 mm⁻¹ Dx = 1.336 g cm⁻³, $2\theta_{(max)} = 50^{\circ}$, T = 160 K, 30928 measured reflections, 4389 independent reflections, 3012 reflections with $I > 2\sigma(I)$, refinement on F^2 with SHELXL97, 348 parameters, R(F) [$I > 2\sigma(I)$ reflections] = 0.0575, $wR(F^2)$ [all data] = 0.1522, goodness of fit = 1.073, $\Delta\rho_{max} = 0.29 \ e$ Å⁻³.

Compound **3f** (obtained from layering ether above an NMR sample in CDCl₃): $C_{36}H_{36}N_4O_2$, M = 556.71, space group: $P2_1/c$ (monoclinic), a = 8.5899(4) Å, b = 27.008(1) Å, c = 12.9677(5) Å, $\beta = 104.886(3)^\circ$, V = 2907.5(2) Å³, Z = 4, F(000) = 1184, μ (Mo $K\alpha$) = 0.0797 mm⁻¹ Dx = 1.272 g cm⁻³, $2\theta_{(max)} = 50^\circ$, T = 160 K, 42093 measured reflections, 5103 independent reflections, 3203 reflections with $I > 2\sigma(I)$, refinement on F^2 with SHELXL97, 388 parameters, R(F) [$I > 2\sigma(I)$ reflections] = 0.0933, $wR(F^2)$ [all data] = 0.2685, goodness of fit = 1.041, $\Delta \rho_{max} = 1.22 e$ Å⁻³.

Compound **5a** (obtained from EtOAc/CH₂Cl₂): C₂₄H₁₈Br₂N, M = 522.24, space group: C2/c (monoclinic), a = 17.1485(4) Å, b = 15.7133(6) Å, c = 8.9323(5) Å, $\beta = 119.689(2)^{\circ}$, V = 2090.9(1) Å³, Z = 4, F(000) = 1040, μ (Mo K α) = 3.908 mm⁻¹ Dx = 1.659 g cm⁻³, $2\theta_{(max)} = 55^{\circ}$, T = 160 K, 22598 measured reflections, 2396 independent reflections, 1952 reflections with $I > 2\sigma(I)$, refinement on F^2 with SHELXL97, 137 parameters, R(F) [$I > 2\sigma(I)$ reflections] = 0.0669, $wR(F^2)$ [all data] = 0.1859, goodness of fit = 1.103, $\Delta \rho_{max} = 1.42 e$ Å⁻³.