Complementary Chemoenzymatic Routes to Both Enantiomers of Febrifugine

Marloes A. Wijdeven,^{*a*} Rutger J. F. van den Berg,^{*a*} Roel Wijtmans,^{*a*} Peter N. M. Botman,^{*b*} Richard H. Blaauw,^{*b*} Hans E. Schoemaker,^{*c*} Floris L. van Delft^{*a*} and Floris P. J. T. Rutjes^{*a*,*}

Contents

General information	1
Experimental procedures	1-6
Spectral data	6-21

General information: Solvents were distilled from appropriate drying agents prior to use and stored under nitrogen. Chemicals were purchased from Sigma-Aldrich and used as received, unless stated otherwise. Reactions were carried out under an inert atmosphere of dry nitrogen or argon. Standard syringe techniques were applied for the transfer of dry solvents and air- or moisture-sensitive reagents. Reactions were followed using thin layer chromatography (TLC) on silica gel-coated plates (Merck 60 F254) with the indicated solvent mixture. Detection was performed with UV-light, and/or by charring at ~150 ℃ after dipping into a solution of either 2% anisaldehyde in ethanol/H₂SO₄ or (NH₄)₆Mo₇O₂₄.4H₂O (25 g/L) and (NH₄)₄Ce(SO₄)₄.2H₂O (10 g/L) in 10% H₂SO₄. Melting points were analyzed with a Büchi melting point B-545. IR spectra were recorded on an ATI Mattson Genesis Series FTIR spectrometer, or a Bruker Tensor 27 FTIR spectrometer. Gas chromatography (GC) was performed on a Hewlett Packard 5890, containing a HP1 column (25 m x 0.32 mm x 0.17 µm), FID detection, and equipped with a HP3393A integrator. NMR spectra were recorded on a Bruker DMX 300 (300 MHz), and a Varian 400 (400 MHz) spectrometer in CDCl₃ solutions (unless otherwise reported). Chemical shifts are given in ppm with respect to tetramethylsilane (TMS) as internal standard. Coupling constants are reported as J-values in Hz. Column or flash chromatography was carried out using ACROS silica gel (0.035-0.070 mm, and ca 6 nm pore diameter). Optical rotations were determined with a Perkin Elmer 241 polarimeter. High resolution mass spectra were recorded on a JEOL AccuTOF (ESI), or a MAT900 (EI, CI, and ESI).

(2S,3S)-2-Allyl-3-hydroxypiperidine-1-carboxylic acid tert-butyl ester (14)

To a solution of **3** (906 mg, 3.36 mmol) in THF (30 mL) was added LiAlH₄ (319 mg, 8.4 mmol) and the reaction was stirred overnight at 70 °C. The reaction was carefully quenched by addition of H₂O (597 mg, 1.3 mg/mg LiAlH₄), aqueous NaOH (15% in H₂O, 597 mg, 1.3 mg/mg LiAlH₄) and again H₂O (1492 mg, 3.25 mg/mg LiAlH₄). The resulting suspension was stirred vigorously for 10 min, filtrated and the filtrate was

concentrated *in vacuo*. The residue was dissolved in aqueous 0.5 M NaOH (50 mL) and (Boc)₂O (1.47 g, 6.74 mmol) was added. After stirring overnight the reaction was quenched by addition of aqueous 0.1 M HCl (400 mL) followed by extraction with EtOAc (4 × 200 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ (300 mL) and brine (300 mL), dried over Na₂SO₄, filtrated and concentrated *in vacuo*. Flash chromatography (1:9-1:2 EtOAc:heptane) afforded product **14** as a colorless oil (595 mg, 2.46 mmol, 73%). $[\alpha]_D^{20}$ +48 (c 0.28, CH₂Cl₂). IR (film) 3386, 2929, 1688, 1661, 1418, 1364, 1248, 1176, 1150 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃, rotamers) δ 5.81-5.71 (m, 1H), 5.09-4.98 (m, 2H), 4.43 (m, 1H), 3.91-3.89 (m, 1H), 3.81-3.80 (m, 1H), 2.70-2.64 (m, 1H), 2.47-2.43 (m, 1H), 2.37-2.28 (m, 1H), 1.80-1.51 (m, 3H), 1.48 (s, 9H), 0.89-0.95 (m, 2H). ¹³C-NMR (75 MHz, CHCl₃) δ 155.1, 135.3, 116.6, 79.6, 54.9, 37.2, 28.3, 28.2, 27.6, 24.2. HRMS (ESI⁺): calcd for C₁₃H₂₃NNaO₃ (*M*+Na⁺): 264.15756, found: 264.15674.

(2*S*,3*S*)-2-(3-Azido-2-hydroxypropyl)-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (16)

Epoxide **15** (20 mg, 0.066 mmol) was dissolved in a mixture of methanol (4 mL) and H_2O (0.5 mL) and sodium azide (22 mg, 0.33 mmol) and ammonium chloride (11 mg, 0.2 mmol) were added. The reaction mixture was stirred overnight at 70 °C and then quenched with saturated aqueous NaHCO₃ (5 mL) and EtOAc (5 mL). The aqueous layer was extracted with EtOAc (3 × 10 mL),

the combined organic layers were washed with brine (20 mL), dried over Na_2SO_4 , filtrated and concentrated *in vacuo*. Flash chromatography (1:5 EtOAc:heptane) afforded the two pure diastereoisomers **16**_{major} (11 mg, 0.032 mmol, 50%) and **16**_{minor} (4 mg, 0.012 mmol, 20%) as colorless oils.

Major-**16**: $[\alpha]_D^{20}$ –15.7 (c 0.31, CH₂Cl₂). IR (film) 3434, 2967, 2933, 2881, 2094, 1679, 1649, 1419, 1161, 1031 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃, rotamers) δ 4.69-4.690 (m, 3H), 4.35-4.34 (m, 1H), 3.90-3.86 (m, 1H), 3.73 (m, 1H), 3.57-3.56 (m, 1H), 3.38-3.35 (m, 3H), 3.23-3.19 (m, 2H), 2.65-2.59 (m, 2H), 1.87-1.86 (m, 2H), 1.71 (m, 3H), 1.69 (m, 9H). ¹³C-NMR (75 MHz, CHCl₃) δ 156.5, 95.0, 80.9, 73.4, 66.8, 56.1, 55.6, 49.4, 38.6, 28.6, 28.3, 25.7, 24.0. HRMS (ESI⁺): calcd for C₁₅H₂₈N₄NaO₅ (*M*+Na⁺): 367.1957, found: 367.1944.

 $\begin{array}{l} \mbox{Minor-16:} \left[\alpha\right]_D^{20} + 25.3 \ (c \ 0.20, \ CH_2Cl_2). \ IR \ (film) \ 3438, \ 2933, \ 2872, \ 2107, \ 1684, \ 1666, \ 1416, \ 1148, \ 1040 \ cm^{-1}. \ ^1H-NMR \ (400 \ MHz, \ CDCl_3, \ rotamers) \ \delta \ 4.67 \ (m, \ 2H), \ 4.44-4.39 \ (m, \ 1H), \ 3.89 \ (m, \ 2H), \ 3.62 \ (m, \ 2H), \ 3.37-3.32 \ (m, \ 5H), \ 2.77-2.70 \ (m, \ 1H), \ 1.94-1.91 \ (m, \ 3H), \ 1.62 \ (m, \ 2H), \ 1.46 \ (m, \ 10H). \ ^{13}C-NMR \ (75 \ MHz, \ CHCl_3) \ \delta \ 155.9, \ 95.2, \ 80.6, \ 74.5, \ 70.4, \ 56.3, \ 55.6, \ 51.7, \ 38.8, \ 29.8, \ 28.4, \ 25.7, \ 24.0. \ HRMS \ (ESI^+): \ calcd \ for \ C_{15}H_{28}N_4NaO_5 \ (\ M+Na^+): \ 367.1957, \ found: \ 367.1932. \end{array}$

(2*S*,3*S*)-2-(3-Amino-2-hydroxypropyl)-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (17).

To a solution of 16_{major} (26 mg, 0.077 mmol) in a mixture of THF (6 mL) and aqueous 0.25 M NaOH (2 mL) was added trimethylphosphine (1 M solution in THF, 380 µl, 0.38 mmol). After stirring overnight the solvent was removed under reduced pressure. Purification with an Isolute[®] Flash SCX-2 ion exchange column gave product 17_{major} (19 mg, 0.06 mmol, 80%) as a white

solid. mp = 85 °C. $[\alpha]_D^{20}$ +5.9 (c 0.19, CH₂Cl₂). IR (film) 3377, 2945, 2885, 1679, 1671, 1411, 1372, 1152, 1040 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃, rotamers) δ 4.74-4.61 (m, 4H), 3.89-3.72 (m, 1H), 3.51 (m, 2H), 3.38 (m, 4H), 2.71-2.64 (m, 4H), 1.84 (m, 2H), 1.70-1.64 (m, 3H), 1.55 (m, 10H). ¹³C-NMR (75 MHz, CHCl₃) δ 155.8, 94.5, 80.0, 73.0, 68.3, 55.0, 49.1, 47.4, 38.0, 28.1, 27.8, 25.2, 23.6. HRMS (ESI⁺): calcd for C₁₅H₃₀N₂NaO₅ (*M*+Na⁺): 341.2052, found: 341.2053

(2*S*,3*S*)-2-(3-Amino-2-hydroxypropyl)-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (17)

Compound **16**_{minor} (134 mg, 0.39 mmol) was reacted with trimethylphosphine, following the same procedure as for **16**_{major}. Purification with an Isolute[®] Flash SCX-2 ion exchange column gave the product **17**_{minor} (114 mg, 0.36 mmol, 92%) as a colorless oil. $[\alpha]_D^{20}$ +17.8 (c 0.30, CH₂Cl₂). IR (film) 3360, 2971, 2932, 2876, 1684, 1148, 1031 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, rotamers) δ

4.66 (m, 2H), 4.46 (m, 1H), 3.88 (m, 1H), 3.62-3.60 (m, 2H), 3.42-3.37 (m, 3H), 2.87-2.77 (m, 2H), 2.63-2.47 (m, 4H), 1.83 (m, 2H), 1.69-1.56 (m, 2H), 1.51 (m, 11H). No clear ¹³C NMR could be

obtained due to rotamers. HRMS (ESI⁺): calcd for $C_{15}H_{30}N_2NaO_5$ (*M*+Na⁺): 341.2052, found: 341.2053.

(2*S*,3*S*)-2-[3-(2-Aminobenzoylamine)-2-hydroxypropyl]-3-methoxymethoxypiperidine-1carboxylic acid *tert*-butyl ester (18)

To a solution of **17**_{major} (239 mg, 0.75 mmol) in dry EtOAc (70 mL) were added isatoic anhydride (429 mg, 2.63 mmol) and triethyl amine (151 μ l, 1.125 mmol) and the mixture was stirred overnight at 40 °C. The reaction was quenched by the addition of saturated aqueous NaHCO₃ (50 mL) and extracted with EtOAc (4 × 75 mL). The

combined organic layers were washed with brine (150 mL), dried over Na₂SO₄, filtrated and concentrated *in vacuo*. The crude product was dissolved in a mixture of THF (20 mL), methanol (20 mL) and aqueous 1 M NaOH (20 mL). After stirring for 2 h, the reaction was quenched by adding saturated aqueous NaHCO₃ (70 mL) and extracted with EtOAc (4 × 100 mL). The combined organic layers were washed with brine (100 mL), dried over Na₂SO₄, filtrated and concentrated *in vacuo*. Flash chromatography (1:2-3:1 EtOAc:heptane) afforded product **18**_{major} (222 mg, 0.51 mmol, 67%) as a colorless oil. [α]_D²⁰ +8.8 (c 0.19, CH₂Cl₂). IR (film) 3443, 3339, 2971, 2928, 2889, 1649, 1416, 1152, 1031 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃, rotamers) δ 7.35-7.50 (m, 1H), 7.33 (m, 1H), 6.71-6.63 (m, 3H), 5.50 (m, 2H), 4.67-4.66 (m, 2H), 4.65-4.59 (m, 1H), 3.88-3.81 (m, 2H), 3.76-3.70 (m, 1H), 3.55-3.54 (m, 1H), 3.38 (m, 3H), 3.20-3.14 (m, 1H), 1.88-1.68 (m, 5H), 1.60-1.45 (m, 12H) . ¹³C-NMR (75 MHz, CHCl₃) δ 169.2, 156.6, 148.6, 132.1, 127.3, 117.1, 116.6, 116.3, 95.0, 80.8, 73.6, 66.4, 55.6, 49.6, 44.6, 38.7, 28.7, 28.3, 25.7, 24.0. HRMS (ESI⁺): calcd for C₂₂H₃₅N₃NaO₆ (*M*+Na⁺): 460.2424, found: 460.2381.

(2*S*,3*S*)-2-[3-(2-Aminobenzoylamine)-2-hydroxypropyl]-3-methoxymethoxy-piperidine-1carboxylic acid *tert*-butyl ester (18)

Substrate **17**_{minor} (107 mg, 0.34 mmol) was reacted with isatoic anhydride, following the same procedure as for **17**_{major}. Flash chromatography (1:2-3:1 EtOAc:heptane) afforded product **18**_{minor} (117 mg, 0.27 mmol, 80%). [α]_D²⁰ –3.7 (c 0.20, CH₂Cl₂). IR (film) 3447, 3343, 2937, 2885, 1649, 1528, 1416, 1364, 1260, 1156, 1035 cm⁻¹. ¹H-NMR

(400 MHz, CDCl₃, rotamers) δ 7.37-7.35 (m, 1H), 7.19 (m, 1H), 6.73-6.66 (m, 3H), 5.52 (bs, 2H), 4.67 (m, 2H), 4.45 (m, 1H), 4.34 (m, 1H), 3.88 (m, 1H), 3.75-7.70 (m, 1H), 3.64-3.60 (m, 1H), 3.35-3.31 (m, 4H), 2.81-2.76 (m, 1H), 2.00-1.77 (m, 5H), 1.54 (m, 11H). ¹³C-NMR (75 MHz, CHCl₃) δ 170.0, 156.0, 148.7, 132.2, 127.4, 117.2, 116.5, 116.0, 95.3, 80.6, 74.8, 70.6, 60.4, 55.6, 51.8, 45.0, 38.8, 30.1, 28.4, 25.7, 24.0, 14.2. HRMS (ESI⁺): calcd for C₂₂H₃₅N₃NaO₆ (*M*+Na⁺): 460.2423, found: 460.2381.

(2S,3S)-2-[2-Hydroxy-3-(4-oxo-4*H*-quinazolin-3-yl)propyl]-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (19)

To a solution of **18**_{major} (232 mg, 0.52 mmol) in toluene (10 mL) were added *p*-TsOH (20 mg, 0.11 mmol) and triethyl orthoformate (260 mg, 1.56 mmol) and the mixture was stirred overnight at 40 °C. The reaction was quenched with saturated aqueous NaHCO₃ (10 mL) and extracted with EtOAc (4 × 15 mL). The combined organic layers were

washed with brine (40 mL), dried over Na_2SO_4 , filtrated and concentrated *in vacuo*. Flash chromatography (1:2-2:1 EtOAc:heptane) afforded product **19**_{major} (197 mg, 0.44 mmol, 85%) as a

colorless oil. $[\alpha]_D^{20}$ +59.8 (c 0.28, CH₂Cl₂). IR (film) 2971, 2941, 2876, 2353, 2340, 1684, 1645, 1558, 1152, 1035 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃, rotamers) δ 8.29-8.22 (m, 2H), 7.73 (m, 2H), 7.48 (m, 1H), 4.68 (m, 3H), 4.48-4.38 (m, 2H), 3.86 (m, 1H), 3.73 (m, 2H), 3.60-3.57 (m, 1H), 3.37 (m, 3H), 2.70 (m, 1H), 1.88 (m, 2H), 1.70 (m, 2H), 1.53-1.41 (m, 2H), 1.37 (m, 9H). ¹³C-NMR (75 MHz, CHCl₃) δ 161.3, 156.5, 148.3, 148.0, 134.1, 127.5, 126.8, 126.5, 122.0, 95.0, 80.9, 73.4, 65.3, 55.6, 51.8, 49.5, 38.7, 28.7, 28.2, 25.7, 24.0. HRMS (ESI⁺): calcd for C₂₃H₃₃N₃NaO₆ (*M*+Na⁺): 470.2267, found: 470.2267.

(2S,3S)-2-[2-Hydroxy-3-(4-oxo-4*H*-quinazolin-3-yl)propyl]-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (19)

Substrate **18**_{minor} (95 mg, 0.21 mmol) was reacted with triethyl orthoformate, following the same procedure as for **18**_{major}. Flash chromatography (1:2-2:1 EtOAc: heptane) afforded product **19**_{minor} (77 mg, 0.17 mmol, 82%). [α]_D²⁰ –19.4 (c 0.27, CH₂Cl₂). IR (film) 2971, 2941, 2876, 2353, 2340, 1684, 1645, 1558, 1152, 1035 cm⁻¹. ¹H-NMR

(400 MHz, CDCl₃, rotamers) δ 8.25-8.20 (m, 2H), 7.73-7.69 (m, 2H), 7.29 (m, 1H), 4.68 (m, 2H), 4.54 (m, 1H), 4.40-4.37 (m, 1H), 4.19-4.05 (m, 2H), 3.85-3.84 (m, 2H), 3.64-3.61 (m, 1H), 3.38 (m, 3H), 2.80 (m, 1H), 2.05 (m, 2H), 1.86 (m, 1H), 1.70 (m, 2H), 1.45 (m, 10H). ¹³C-NMR (75 MHz, CHCl₃) δ 161.3, 156.5, 148.3, 148.0, 134.1, 127.5, 126.8, 126.5, 122.0, 95.0, 80.9, 73.4, 65.3, 55.6, 51.8, 49.5, 38.7, 28.7, 28.2, 25.7, 24.0. HRMS (ESI⁺): calcd for C₂₃H₃₃N₃NaO₆ (*M*+Na⁺): 470.2267, found: 470.2268.

(2*S*,3*S*)-2-[2-Oxo-3-(4-oxo-4*H*-quinazolin-3-yl)propyl]-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (20)

Both diastereoisomers of **19** (14 mg, 0.035 mmol) were dissolved in CH_2CI_2 (5 mL) and Dess-Martin periodinane (39 mg, 0.091 mmol) was added. After stirring overnight, the reaction was quenched with saturated aqueous NaHCO₃ (5 mL) and extracted with dichloromethane (4 × 5 mL). The combined organic layers were washed with brine (15

mL), dried over Na₂SO₄, filtrated and the solvent was removed under reduced pressure. Flash chromatography (1:2-2:1 EtOAc:heptane) afforded product **20** (10 mg, 0.022 mmol, 83%). $[\alpha]_D^{20}$ +41.3 (c 0.20, CH₂Cl₂). IR (film) 2976, 2937, 2885, 1675, 1606, 1351, 1148, 1031 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃, rotamers) δ 8.29-8.27 (m, 1H), 8.04 (m, 1H), 7.76-7.71 (m, 2H), 7.51-7.47 (m, 1H), 5.24-5.20 (m, 1H), 5.00-4.98 (m, 2H), 4.69 (m, 2H), 3.86-3.84 (m, 1H), 3.75-3.73 (m, 1H), 3.40 (m, 3H), 3.07-04 (m, 1H), 2.85-2.65 (m, 2H), 2.07-2.04 (m, 1H), 1.90 (m, 1H), 1.72 (m, 1H), 1.44 (m, 10H). ¹³C-NMR (75 MHz, CHCl₃) δ 201.1, 160.9, 155.3, 148.2, 146.9, 134.2, 127.5, 127.1, 126.6, 121.8, 95.5, 80.5, 74.1, 55.7, 53.4, 51.2, 38.4, 36.5, 28.3, 25.4, 23.7. HRMS (ESI⁺): calcd for C₂₃H₃₁N₃NaO₆ (*M*+Na⁺): 468.2111, found: 468.2148.

(2*S*,5*R*,6*S*)-5-Hydroxy-6-[2-(4-oxo-4*H*-quinazolin-3-ylmethyl)-allyl]piperdine-1,2-dicarboxylic acid 1-benzyl ester 2-methyl ester (22).

To a suspension of NaH (42 mg, 1.11 mmol) in DMF (5 mL) was added 4-hydroxyquinazoline (147 mg, 1.01 mmol) at 0 °C. After stirring for 30 min **21** (385 mg, 1.01 mmol) was added and the mixture was stirred overnight at rt. The reaction mixture was quenched with saturated aqueous

NH₄Cl (10 mL), extracted with EtOAc (3 × 30 mL), and the combined organic phases were washed

with brine (3 × 10 mL), dried over Na₂SO₄ and concentrated *in vacuo*. Flash chromatography (2:1-7:1 EtOAc:heptane) afforded product **22** as a colorless oil (395 mg, 0.80 mmol, 80%). $[\alpha]_D^{20}$ + 3.4 (c 0.26, CH₂Cl₂). IR (film) 3447, 2946, 17.39, 1679, 1601, 1312, 772, 737, 690 cm⁻¹. ¹H-NMR (300 MHz, CDCl₃, rotamers) δ 8.28-8.21 (m, 1H), 8.09 (m, 1H), 7.72-7.67 (m, 2H), 7.48-7.43 (m, 1H), 7.32 (m, 5H), 5.21-5.18 (m, 1H), 5.09-4.82 (m, 3H), 4.71-4.47 (m, 3H), 4.02-3.82 (m, 2H), 3.70-3.62 (m, 3H), 2.56-2.52 (m, 1H), 2.34-2.20 (m, 3H), 1.81-1.71 (m, 2H). No clear ¹³C-NMR due to rotamers. HRMS (ESI⁺): calcd for C₂₇H₂₉N₃NaO₆ (*M*+Na⁺): 514.1970, found: 514.1954.

(2S,3S)-2-Allyl-3-hydroxypiperidine-1-carboxylic acid tert-butyl ester (14)

(2S,3S)-3-Methoxymethoxy-2-oxiranymethylpiperidine-1-carboxylic acid tert-butyl ester (15)

(2*S*,3*S*)-2-(3-Azido-2-hydroxypropyl)-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (major-16)

Boc ¹H NMR CDCl₃ 400 MHz, ¹³C NMR CDCl₃ 75 MHz

(2*S*,3*S*)-2-(3-Azido-2-hydroxypropyl)-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (minor-16)

(2*S*,3*S*)-2-(3-Amino-2-hydroxypropyl)-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (major-17)

^boc¹H NMR CDCl₃ 400 MHz, ¹³C NMR CDCl₃ 75 MHz

(2*S*,3*S*)-2-(3-Amino-2-hydroxypropyl)-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (minor-17)

Boc¹H NMR CDCl₃ 400 MHz,

(2*S*,3*S*)-2-[3-(2-Aminobenzoylamine)-2-hydroxypropyl]-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (major-18)

(2*S*,3*S*)-2-[3-(2-Aminobenzoylamine)-2-hydroxypropyl]-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (minor-18)

(2*S*,3*S*)-2-[2-Hydroxy-3-(4-oxo-4*H*-quinazolin-3-yl)propyl]-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (major-19)

(2*S*,3*S*)-2-[2-Hydroxy-3-(4-oxo-4*H*-quinazolin-3-yl)propyl]-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (minor-19)

(2*S*,3*S*)-2-[2-Oxo-3-(4-oxo-4*H*-quinazolin-3-yl)propyl]-3-methoxymethoxypiperidine-1-carboxylic acid *tert*-butyl ester (20)

Febrifugine-2HCI (1)

(2*S*,5*R*,6*S*)-6-(2-Chloromethylallyl)-5-hydroxypiperdine-1,2-dicarboxylic acid 1-benzyl ester 2-methyl ester (21).

HO/, CI CO₂Me N Cbz ¹H NMR CDCl₃ 300 MHz

(2*S*,5*R*,6*S*)-5-Hydroxy-6-[2-(4-oxo-4*H*-quinazolin-3-ylmethyl)-allyl]piperdine-1,2-dicarboxylic acid 1-benzyl ester 2-methyl ester (22).

(2*S*,5*R*,6*S*)-5-Hydroxy-6-[2-(4-oxo-4*H*-quinazolin-3-ylmethyl)-allyl]piperdine-1-carboxylic acid benzyl ester (24).

HO/, || 0

^LCbz ¹H NMR CDCl₃ 300 MHz

(5*R*,6*S*)-3-[3-(3-Hydroxy-piperdin-2-yl)-2-oxo-propyl]-3*H*-quinolizin-4-one-2HCl febrifugine-2HCl) ((–)-1).

HO,, 0 1 N || 0 ^1H NMR CD_3OD 400 MHz, ^{13}C NMR D_2O 75 MHz Integral 5: 5: <u>2:1292</u> 0.9222 2.1386 3388 0.9355 1030 0002 .9956 1.0715 0519 5.0 (ppm) 9.5 8.5 7.0 6.5 6.0 5.5 4.5 4.0 3.0 2.5 2.0 1.5 1.0 0.5 9.0 8.0 7.5 201.4022 pb 276 d2o0

> 200 (ppm)

120

140

80

180

160

200

(ent-

60

40

20