Supporting Information

8-Aza-2'-deoxyguanosine: Base Pairing, Mismatch Discrimination and Nucleobase Anion Fluorescence Sensing in Single-Stranded and Duplex DNA

Frank Seela*, Dawei Jiang, Kuiying Xu

Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany and Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany

Table of contents

Table S1. Fluorescence excitation and emission wavelengths	2
Figure S2. UV spectra of dG and nucleoside 9	2
Figure S3. UV spectrum of nucleoside 9	3
Figure S4. Expanded spectrum of the pH-dependent fluorescence emission curve	
of duplex 18 · 21	3
Figure S5. ¹ H NMR spectrum of compound 15	4
Figure S6. ¹³ C NMR spectrum of compound 15	5
Figure S7. ¹ H NMR spectrum of compound 9	6
Figure S8. ¹³ C NMR spectrum of compound 9	7
Figure S9. ¹ H NMR spectrum of compound 16	8
Figure S10. ¹³ C NMR spectrum of compound 16	9
Figure S11. ¹ H NMR spectrum of compound 17	10
Figure S12. ¹³ C NMR spectrum of compound 17	11
Figure S13. ¹ H NMR spectrum of compound 11	12
Figure S14. ³¹ P NMR spectrum of compound 11	13

pH value	Excitation wavelength [nm]	Emission wavelength [nm]
4.4	254	346
5.2	255	346
5.8	256	347
6.3	272	351
7.1	277	358
8.0	277	359
8.4	277	359
8.7	278	359
9.3	278	358
9.8	278	358
10.2	278	359
10.8	278	359

Table S1 Fluorescence excitation and emission wavelengths at different pH values utilized for the determination of the pK_a value.

Figure S2 UV spectra of dG and nucleoside **9**, measured in MeOH (at identical concentrations).

Extinction coefficients: dG $\varepsilon_{254} = 13450$, $\varepsilon_{260} = 11900$; z^8G_d (9) $\varepsilon_{257} = 13400$, $\varepsilon_{260} = 12660$.

Figure S3 UV spectra of nucleoside 9, measured in H₂O. Extinction coefficients: z^8G_d (9) $\varepsilon_{254} = 11400$, $\varepsilon_{260} = 10300$.

Figure S4 Expanded spectrum of the pH-dependent fluorescence emission curve of duplex **18·21** (see manuscript Figure 5). Measurements were performed in 1.0 M NaCl, 60mM Nacacodylate buffer (5 μ M concentration for each ss oligonucleotide). Excitation wavelength = 277 nm; emission at 360 nm. The p K_a values are 9.1 and 10.4.

8-Aza-2'-deoxy-3',5'-di-O-(4-toluoyl)-guanosine

4

Figure S5. ¹H-NMR spectrum of compound 15.

8-Aza-2'-deoxy-3',5'-di-0-(4-toluoy1)-guanosine

5

Figure S6. ¹³C-NMR spectrum of compound 15.

8-Aza-2'-deoxyguanosine

Figure S7. ¹H-NMR spectrum of compound 9.

Figure S8. ¹³C-NMR spectrum of compound 9.

8-Aza-2'-deoxyguanosine, dibutylformamidine protected

Figure S9. ¹H-NMR spectrum of compound 16.

8-Aza-2'-deoxyguanosine, dibutylformamidine protected

Figure S10. ¹³C-NMR spectrum of compound 16.

8-Aza-5'-O-DMT-2'-deoxyguanosine,dibutylformamidine protected

Figure S11. ¹H-NMR spectrum of compound 17.

Figure S12. ¹³C-NMR spectrum of compound 17.

8-Aza-5'-O-DMT-2'-deoxyguanosine, dibutylformamidine protected, phosphoramidite

Figure S13. ¹H-NMR spectrum of compound 11.

8-Aza-5'-O-DMT-2'-deoxyguanosine, dibutylformamidine protected, phosphoramidite

Figure S14. ³¹P-NMR spectrum of compound 11.