Supporting Information for

Epimeric and amino disaccharide analogs as probes of an α -(1 \rightarrow 6)mannosyltransferase involved in mycobacterial lipoarabinomannan biosynthesis.

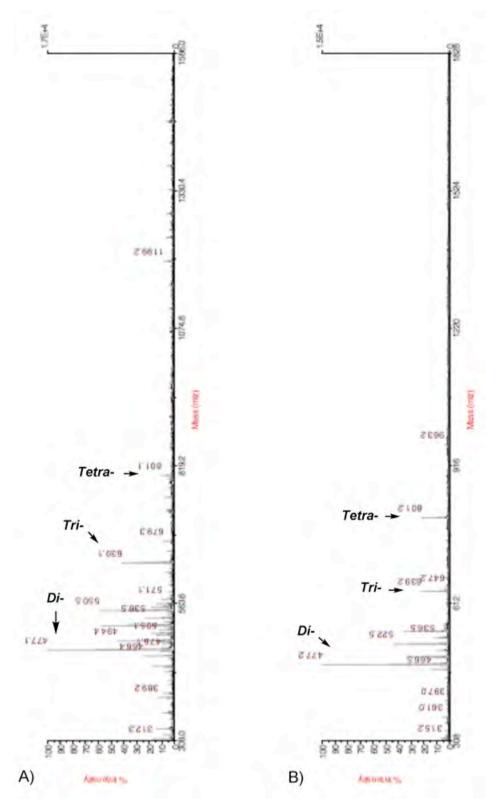
Pui Hang Tam and Todd L Lowary

Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The

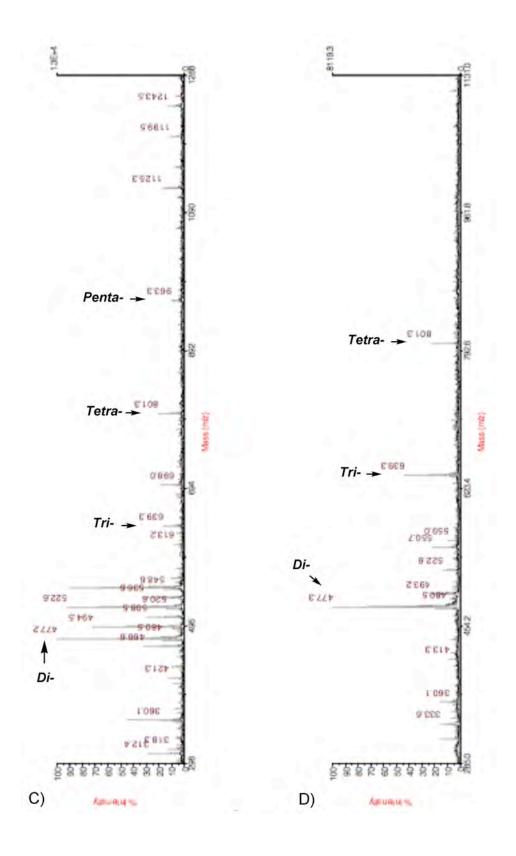
University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, AB T6G 2G2,

Canada

Email: tlowary@ualberta.ca


Table of Contents

S4
S6
S33
S34
S35
S36
S37
S38
S39
S40
S41


1 I NIMD encetrum of C	C 4 0
¹ H NMR spectrum of 6 $(A DT)$ of 6	S42
¹³ C NMR spectrum (APT) of 6	S43
¹ H NMR spectrum of 7	S44
¹³ C NMR spectrum (APT) of 7	S45
¹ H NMR spectrum of 8	S46
¹³ C NMR spectrum (APT) of 8	S47
¹ H NMR spectrum of 9	S48
¹³ C NMR spectrum (APT) of 9	S49
¹ H NMR spectrum of 13	S50
¹³ C NMR spectrum (APT) of 13	S51
¹ H NMR spectrum of 14	S52
¹³ C NMR spectrum (APT) of 14	S53
¹ H NMR spectrum of 15	S54
¹³ C NMR spectrum (APT) of 15	S55
¹ H NMR spectrum of 18	S56
¹³ C NMR spectrum (APT) of 18	S57
¹ H NMR spectrum of 19	S58
¹³ C NMR spectrum (APT) of 19	S59
¹ H NMR spectrum of 20	S60
¹³ C NMR spectrum (APT) of 20	S61
¹ H NMR spectrum of 21	S62
¹ H NMR spectrum of 22	S63
¹ H NMR spectrum of 23	S64
¹³ C NMR spectrum (APT) of 23	S65
¹ H NMR spectrum of 26	S66
¹³ C NMR spectrum (APT) of 26	S67
¹ H NMR spectrum of 27	S68
¹³ C NMR spectrum (APT) of 27	S69
¹ H NMR spectrum of 28	S70
13 C NMR spectrum (APT) of 28	S71
¹ H NMR spectrum of 29	S72
	312

¹³ C NMR spectrum (APT) of 29	S73
¹ H NMR spectrum of 30	S74
¹³ C NMR spectrum (APT) of 30	S75
¹⁹ F NMR spectrum of 30	S76
¹ H NMR spectrum of 31	S77
¹³ C NMR spectrum (APT) of 31	S78
¹ H NMR spectrum of 32	S79
¹³ C NMR spectrum (APT) of 32	S80
¹ H NMR spectrum of 33	S81
¹³ C NMR spectrum (APT) of 33	S82
¹ H NMR spectrum of 34	S83
¹³ C NMR spectrum (APT) of 34	S84
¹⁹ F NMR spectrum of 34	S85
¹ H NMR spectrum of 35	S86
¹³ C NMR spectrum (APT) of 35	S87
¹ H NMR spectrum of 36	S88
¹³ C NMR spectrum (APT) of 36	S89
¹ H NMR spectrum of 37	S90
¹³ C NMR spectrum (APT) of 37	S91
¹ H NMR spectrum of 38	S92
¹³ C NMR spectrum (APT) of 38	S93
¹ H NMR spectrum of 39	S94
¹³ C NMR spectrum (APT) of 39	S95
¹ H NMR spectrum of 40	S96
¹³ C NMR spectrum (APT) of 40	S97

Figure S1. MALDI mass spectra of enzymatic products isolated from incubation mixtures using analogs **3** (A), **5** (B), **7** (C), and **9** (D) at 2 mM concentrations.

S4

Phenyl 2-*O*-acetyl-6-*O*-(*tert*-butyldiphenylsilyl)-3,4-*O*-isopropylidene-1-thio- α -D-talopyranoside (13)

Monosaccharide 20 (102 mg, 0.086 mmol) was dissolved in 1:1 CH₂Cl₂-pyridine (4 mL) and acetic anhydride (0.16 mL) was added. The reaction mixture was stirred for 4 h and then diluted with CH₂Cl₂ (25 mL) before being washed with 1 M HCl (3 x 10 mL), satd aq NaHCO₃ (10 mL) and H₂O (10 mL). The organic layer was dried (MgSO₄), concentrated and the crude product was purified by chromatography (6:1 hexane-EtOAc) to give **13** (98 mg, 89%) as colorless oil: R_f 0.40 (6:1 hexane–EtOAc); $[\alpha]_D$ = +77.0 (*c* 2.8, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ_H 7.68–7.73 (m, 4H, ArH), 7.50–7.54 (m, 2H, ArH), 7.35–7.45 (m, 6H, ArH), 7.21–7.26 (m, 3H, ArH), 5.45 (d, 1H, J = 8.6 Hz, H-1), 5.08 (dd, 1H, J = 8.6, 2.9 Hz, H-2), 4.60 (dd, 1H, J = 7.6, 2.9 Hz, H-3), 4.39 (dd, 1H, J = 7.6, 1.9 Hz, H-4), 3.93 (ddd, 1H, J = 6.5, 6.2, 1.9 Hz, H-5), 3.84 (dd, 1H, J = 10.4, 6.2 Hz, H-6a), 3.77 (dd, 1H, J = 10.4, 6.5 Hz, H-6b), 2.19 (s, 3H, C(O)CH₃), 1.44 (s, 3H, C(CH₃)₂), 1.33 (s, 3H, C(CH₃)₂), 1.05 (s, 9H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 170.2 (C=O), 135.7 (2C, Ar), 135.6 (2C, Ar), 133.5 (Ar), 133.4 (2C, Ar), 132.7 (2C, Ar), 129.6 (2C, Ar), 128.8 (2C, Ar), 127.7 (2C, Ar), 127.6 (3C, Ar), 110.8 (C(CH₃)₂), 83.8 (C-1), 73.7 (C-4), 75.6 (C-3), 71.5 (C-5), 69.1 (C-2), 62.4 (C-6), 26.8 (C(CH₃)₃), 26.1 (C(CH₃)₂), 25.5 (C(CH₃)₂), 21.1 (C(O)CH₃), 19.2 (C(CH₃)₃). HRMS (ESI) calcd. for (M + Na) C₃₃H₄₀O₆SiS: 615.2207. Found: 615.2207.

Octyl 2-O-acetyl-3,4-O-isopropylidene- α -D-talopyranoside (14)

Octyl talopyranoside **23** (112 mg, 0.18 mmol) was dissolved in THF (5 mL) and 1.0 M tetra-*n*-butylammonium fluoride in THF (0.9 mL, 0.90 mmol) was added and the solution

was stirred at rt overnight. The solvent was evaporated and the residue was purified by chromatography (2:1 hexane–EtOAc) to give **14** (51 mg, 74%) as a colorless oil. R_f 0.11 (2:1 hexane–EtOAc); [α]_D = +87.8 (*c* 1.7, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ_H 4.88–4.95 (m, 2H, H-1, H-2), 4.59 (dd, 1H, *J* = 7.5, 2.5 Hz, H-3), 4.35 (dd, 1H, *J* = 7.5, 1.8 Hz, H-4), 3.70–3.90 (m, 4H, H-5, H-6a, H-6b, octyl OCH₂), 3.45 (dt, 1H, *J* = 9.7, 6.6 Hz, octyl OCH₂), 2.16 (s, 3H, C(O)CH₃), 2.08 (br s, 1H, OH), 1.48–1.62 (m, 5H, C(CH₃)₂, octyl OCH₂CH₂), 1.20–1.39 (m, 13H, C(CH₃)₂, octyl CH₂), 0.87 (t, 3H, *J* = 6.7 Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) δ_C 170.2 (C=O), 110.8 (C(CH₃)₂), 97.6 (C-1, ¹*J*_{C,H} = 171.9 Hz), 74.6 (C-4), 72.2 (C-3), 70.5 (C-2), 69.8 (C-5), 68.2 (octyl OCH₂), 62.2 (C-6), 31.8 (octyl CH₂), 29.5 (octyl CH₂), 29.3(1) (octyl CH₂), 29.2(6) (octyl CH₂), 26.0(3) (C(CH₃)₂), 26.0(0) (octyl CH₂), 25.2 (C(CH₃)₂), 22.6 (octyl CH₂), 21.1 (C(O)CH₃), 14.1 (octyl CH₃). Anal. Calcd for C₁₉H₃₄O₇ (422.27): C, 68.22; H, 9.06. Found: C, 68.28; H, 9.06. HRMS (ESI) calcd. for (M + Na) C₁₉H₃₄O₇: 397.2197. Found: 397.2198.

p-Tolyl 2,3,4-tri-*O*-benzyl-6-*O*-*tert*-butyldiphenylsilyl-1-thio- β -D-glucopyranoside (15)

Tetraol **24**¹ (1.50 g, 5.24 mmol) and imidazole (0.90 g, 13.1 mmol) were dissolved in DMF (15 mL) and *tert*-butylchlorodiphenylsilane (1.7 mL, 6.55 mmol) was added. The reaction mixture was heated at 45 °C for 5 h and was quenched by the addition of H₂O (2 mL). The mixture was then diluted with EtOAc (60 mL), washed with H₂O (3 x 20 mL), 1M HCl (20 mL) and satd aq NaHCO₃ (20 mL). The organic layer was dried (MgSO₄), concentrated and the resulting oil was dissolved in DMF (4.5 mL) and BnBr (1.0 mL, 8.6 mmol) was added. The solution was cooled in an ice bath and 60% NaH in mineral oil

(0.30 g, 7.64 mmol) was added portion wise, and the mixture was warmed to rt. After 3 h, the reaction was guenched by the addition of CH₃OH (15 mL), diluted with EtOAc (90 mL), washed with H₂O (3 x 40 mL), brine (40 mL) and dried (MgSO₄), filtered and concentrated to pale yellow oil, was purified by chromatography (9:1 hexane-EtOAc) to give **15** (1.43 g, 95%) as a colorless oil: $R_{\rm f}$ 0.33 (9:1 hexane–EtOAc); $[\alpha]_{\rm D}$ = -14.4 (c 1.8, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ_H 7.77–7.81 (m, 2H, ArH), 7.70–7.74 (m, 2H, ArH), 7.50–7.54 (m, 2H, ArH), 7.39–7.45 (m, 4H, ArH), 7.24–7.38 (m, 15H, ArH), 7.13– 7.17 (m, 2H, ArH), 7.70–7.04 (m, 2H, ArH), 4.85–4.92 (m, 4H, PhCH₂), 4.74 (d, 1H, J = 10.2 Hz, PhCH₂), 4.70 (d, 1H, J = 10.8 Hz, PhCH₂), 4.63 (d, 1H, J = 9.8 Hz, H-1), 4.00 (dd, 1H, J = 11.4, 1.8 Hz, H-6a), 3.95 (dd, 1H, J = 11.4, 3.7 Hz, H-6b), 3.80 (dd, 1H, J = 8.9, 8.9 Hz, H-4), 3.72 (dd, 1H, J = 8.9, 8.9 Hz, H-3), 3.53 (dd, 1H, J = 9.8, 8.9 Hz, H-2), 3.38 (ddd, 1H, J = 8.9, 3.7, 1.8 Hz, H-5), 2.31 (s, 3H, CH₃), 1.11 (s, 9H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃) δ_C 138.4 (Ar), 138.3 (Ar), 138.1 (Ar), 137.5 (Ar), 135.9 (2C Ar), 135.7 (2C, Ar), 133.5 (Ar), 133.0 (Ar), 132.4 (2C, Ar), 130.2 (Ar), 129.7, 129.6, 128.5, 128.4, 128.2, 128.0, 127.9, 127.7(9), 127.7(5), 127.7(3), 127.6(8) (23 x Ar), 87.8 (C-1), 86.9 (C-3), 80.8 (C-2), 80.0 (C-5), 77.5 (C-4), 76.0 (PhCH₂), 75.3 (PhCH₂), 75.1 (PhCH₂), 62.7 (C-6), 26.9 (C(CH₃)₃), 21.1 (CH₃), 19.3 (C(CH₃)₃). HRMS (ESI) calcd. for (M + Na) C₅₀H₅₄O₅SiS: 817.3354. Found: 817.3356.

Phenyl 6-*O*-*tert*-butyldiphenylsilyl-1-thio-β-D-galactopyranoside (18)

Tetraol **17**² (2.68 g, 9.85 mmol) and imidazole (1.68 g, 24.6 mmol) were dissolved in DMF (6 mL) and *tert*-butylchlorodiphenylsilane (3.2 mL, 12.3 mmol) was added. The reaction mixture was heated at 45 °C for 3 h and was quenched by the addition of H_2O

(2 mL). The mixture was then diluted with EtOAc (100 mL), washed with H₂O (3 x 30 mL), 1M HCl (30 mL) and satd aq NaHCO₃ (30 mL). The organic layer was dried (MgSO₄), concentrated, and the crude product was purified by chromatography (1:1 hexane–EtOAc) to give **18** (4.73 g, 94%) as a colorless oil: R_f 0.35 (1:1 hexane–EtOAc); [α]_D = -19.0 (*c* 1.2, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ_{H} 7.67–7.75 (m, 4H, ArH), 7.53–7.57 (m, 2H, ArH), 7.35–7.47 (m, 6H, ArH), 7.23–7.29 (m, 3H, ArH), 4.50 (d, 1H, *J* = 9.7 Hz, H-1), 4.09 (m, 1H, H-4), 3.92–4.00 (m, 2H, H-6a, H-6b), 3.68 (ddd, 1H, *J* = 9.7, 9.7, 1.7 Hz, H-2), 3.55–3.62 (m, 2H, H-3, H-5), 2.96 (d, 1H, *J* = 6.4 Hz, OH), 2.94 (d, 1H, *J* = 3.7 Hz, OH), 2.73 (d, 1H, *J* = 1.7 Hz, OH), 1.07 (s, 9H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃) δ_{C} 135.7 (2C, Ar), 135.6 (2C, Ar), 132.9 (Ar), 132.7 (Ar), 132.6 (Ar), 132.2 (2C, Ar), 129.9 (2C, Ar), 129.0 (2C, Ar), 127.8 (5C, Ar), 88.6 (C-1), 78.2 (C-5), 75.0 (C-3), 70.0 (C-2), 69.4 (C-4), 63.8 (C-6), 31.8 (octyl CH₂), 26.8 (C(CH₃)₃), 19.2 (C(CH₃)₃). HRMS (ESI) calcd. for (M + Na) C₂₈H₃₄O₅SiS: 553.1789. Found: 553.1785.

Phenyl 6-O-tert-butyldiphenylsilyl-3,4-O-isopropylidene-1-thio- β -D-

galactopyranoside (19)

Triol **18** (3.37 g, 6.60 mmol), 2,2-dimethoxypropane (6.5 mL, 52.8 mmol), and *p*-TsOH (25 mg) were dissolved in acetone (90 mL) and the mixture was stirred for 2 h. The reaction mixture was neutralized with triethylamine, concentrated, and purified by chromatography (4:1 hexane–EtOAc) to give **19** (3.70 g, quant.) as white foam: R_f 0.30 (4:1 hexane–EtOAc); [α]_D = -2.3 (*c* 1.3, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ_H 7.69–7.74 (m, 4H, ArH), 7.52–7.56 (m, 2H, ArH), 7.35–7.46 (m, 6H, ArH), 7.24–7.29 (m, 3H, ArH), 4.43 (d, 1H, *J* = 10.3 Hz, H-1), 4.27 (dd, 1H, *J* = 5.5, 2.0 Hz, H-4), 4.07 (dd, 1H, *J*

= 6.9, 5.5 Hz, H-3), 3.89–4.01 (m, 3H, H-5, H-6a, H-6b), 3.55 (dd, 1H, J = 10.3, 6.9, 2.3 Hz, H-2), 2.41 (d, 1H, J = 2.3 Hz, OH), 1.41 (s, 3H, $C(CH_3)_2$), 1.33 (s, 3H, $C(CH_3)_2$), 1.06 (s, 9H, $C(CH_3)_3$; ¹³C NMR (125 MHz, CDCl₃) δ_C 135.6(4) (2C, Ar), 135.6(2) (2C, Ar), 133.4 (Ar), 133.3 (Ar), 132.4 (2C, Ar), 132.3 (Ar), 129.7(1) (Ar), 129.7(0) (Ar), 129.0 (2C, Ar), 127.9 (Ar), 127.7 (2C, Ar), 127.6 (2C, Ar), 110.1 ($C(CH_3)_2$), 88.3 (C-1), 79.0 (C-3), 77.2 (C-5), 73.3 (C-4), 71.6 (C-2), 63.0 (C-6), 28.1 ($C(CH_3)_2$), 26.8 ($C(CH_3)_3$), 26.3 ($C(CH_3)_2$), 19.2 ($C(CH_3)_3$). HRMS (ESI) calcd. for (M + Na) C₃₁H₃₈O₅SiS: 573.2102. Found: 573.2105.

Phenyl 6-*O*-*tert*-butyldiphenylsilyl-3,4-*O*-isopropylidene-1-thio- α -D-talopyranoside (20)

Oxalyl chloride (350 μL, 0.69 mmol) was dissolved in CH₂Cl₂ (3.5 mL) and DMSO (110 μ L, 1.52 mmol) was added dropwise at –78 °C. After stirring for 30 min, alcohol **19** (253 mg, 0.46 mmol) in CH₂Cl₂ (3.5 mL) was added dropwise to the mixture over 10 min. After being stirred for 20 min, the solution was then warmed to –60 °C and triethylamine (0.43 mL, 3.1 mmol) was added slowly as the solution warmed to rt over 40 min. The reaction was quenched by the addition H₂O and the organic layer was washed with H₂O (5 mL) and brine (5 mL). The organic layer was dried (MgSO₄), concentrated, and the crude ketone intermediate was redissolved in MeOH (17 mL). Sodium borohydride (35 mg, 0.92 mmol) was then added and the mixture was stirred for 20 min before being neutralized with AcOH. The solution was concentrated and the crude product was purified by chromatography (3:1 hexane–EtOAc) to give α-glycoside **20** (135 mg, 53%) and its β-glycoside isomer (23 mg, 9%) as a colorless oils; α-glycoside **20**, *R*_f 0.32; β-

glycoside, R_f 0.46 (3:1 hexane–EtOAc); Only the α -glycoside was fully characterized: [α]_D = +107.9 (*c* 0.8, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.69–7.74 (m, 4H, ArH), 7.53–7.57 (m, 2H, ArH), 7.34–7.46 (m, 6H, ArH), 7.21–7.29 (m, 3H, ArH), 5.33 (d, 1H, *J* = 7.4 Hz, H-1), 4.55 (dd, 1H, *J* = 7.5, 3.4 Hz, H-3), 4.35 (dd, 1H, *J* = 7.5, 2.0 Hz, H-4), 3.97 (ddd, 1H, *J* = 6.6, 6.0, 2.0 Hz, H-5), 3.85 (dd, 1H, *J* = 10.3, 6.0 Hz, H-6a), 3.80 (dd, 1H, *J* = 10.3, 6.6 Hz, H-6b), 3.75 (ddd, 1H, *J* = 7.4, 7.2, 3.4 Hz, H-2), 2.50 (d, 1H, *J* = 7.2 Hz, OH), 1.45 (s, 3H, C(CH₃)₂), 1.35 (s, 3H, C(CH₃)₂), 1.06 (s, 9H, C(CH₃)₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 135.7 (2C, Ar), 135.6 (2C, Ar), 133.5 (Ar), 133.4 (2C, Ar), 132.6 (2C, Ar), 129.7 (2C, Ar), 128.9 (2C, Ar), 127.7 (Ar), 127.6(4) (2C, Ar), 127.6(0) (2C, Ar), 110.3 (C(CH₃)₂), 87.2 (C-1), 73.3 (2C, C-3, C-4), 70.8 (C-5), 68.3 (C-2), 62.7 (C-6), 26.8 (C(CH₃)₃), 26.0 (C(CH₃)₂), 25.3 (C(CH₃)₂), 19.2 (C(CH₃)₃). HRMS (ESI) calcd. for (M + Na) C₃₁H₃₈O₅SiS: 573.2102. Found: 573.2107.

Phenyl 2,3,4,6-tetra-O-acetyl-1-thio- α -D-talopyranoside (21) and phenyl 2,3,4-tri-O-acetyl-6-O-*tert*-butyldiphenylsilyl-1-thio- α -D-talopyranoside (22)

Talopyranoside **20** (20 mg, 0.036 mmol) was dissolved in 4:1 AcOH–H₂O (2 mL) and heated at 50 °C for 1 h. The reaction mixture was then diluted with EtOAc (10 mL) and washed with satd aq NaHCO₃ (2 x 5 mL). The organic layer was dried (MgSO₄), and concentrated. The crude residue was then dissolved in pyridine (1.5 mL) and acetic anhydride (0.4 mL) and DMAP (small grain) were added. The reaction mixture was stirred for 1 day and then diluted with CH₂Cl₂ (10 mL), before being washed with 0.5 M HCl (3 x 5 mL), water (5 mL) and brine (5 mL). The organic layer was dried (MgSO₄), concentrated and the resulting crude mixture was purified by chromatography (2:1

hexane–EtOAc) to give **21** (10 mg, 65%) and **22** (6 mg, 26%) as colorless oils. Data for **21**: $R_{\rm f}$ 0.27 (2:1, hexane–EtOAc); ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.34–7.51 (m, 2H, ArH), 7.30–7.34 (m, 3H, ArH), 5.57 (d, 1H, J = 1.2 Hz, H-1), 5.36 (m, 1H, H-4), 5.31 (ddd, 1H, J = 3.8, 1.2, 1.2 Hz, H-2), 5.25 (dd, 1H, J = 3.8, 3.8 Hz, H-3), 4.77 (app. td, 1H, J = 6.4, 1.6 Hz, H-5), 4.15–4.22 (m, 2H, H-6a, H-6b), 2.14 (s, 6H, C(O)CH₃), 2.01 (s, 3H, C(O)CH₃), 2.00 (s, 3H, C(O)CH₃). Data for **22**: $R_{\rm f}$ 0.52 (2:1, hexane–EtOAc); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.61–7.64 (m, 4H, ArH), 7.34–7.44 (m, 8H, ArH), 7.20–7.24 (m, 3H, ArH), 5.51 (m, 1H, H-4), 5.48 (d, 1H, J = 1.3 Hz, H-1), 5.32 (ddd, 1H, J = 3.7, 1.3, 1.3 Hz, H-2), 5.27 (dd, 1H, J = 3.7, 3.7 Hz, H-3), 4.77 (app. td, 1H, J = 6.0, 1.4 Hz, H-5), 3.66–3.75 (m, 2H, H-6a, H-6b), 2.11 (s, 3H, C(O)CH₃), 2.03 (s, 3H, C(O)CH₃), 2.02 (s, 3H, C(O)CH₃), 1.03 (s, 9H, C(CH₃)₃).

Octyl 2-*O*-acetyl-6-*O*-*tert*-butyldiphenylsilyl-3,4-*O*-isopropylidene- α -D-talopyranoside (23)

Thioglycoside **13** (31 mg, 0.052 mmol) and powdered 4 Å molecular sieves (50 mg) were dried overnight under vacuum with P₂O₅. Dry CH₂Cl₂ (2 mL) was added and the solution was cooled to 0 °C before the sequential addition of octanol (10 µL, 0.065 mmol), *N*-iodosuccinimide (16 mg, 0.065 mmol) and TMSOTf (3 µL, 0.016 mmol). The mixture was stirred for 1 h at 0 °C and neutralized with triethylamine, before being filtered through Celite and concentrated. The crude residue was purified by chromatography (4:1 hexane–EtOAc) to give **23** (272 mg, 89%) as a colorless oil. *R*_f 0.38 (4:1 hexane–EtOAc); $[\alpha]_D = +35.6$ (*c* 0.9, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ_H 7.68–7.73 (m, 4H, ArH), 7.35–7.45 (m, 6H, ArH), 4.92 (dd, 1H, *J* = 6.2, 2.9 Hz, H-2),

4.86 (d, 1H, J = 6.2 Hz, H-1), 4.56 (dd, 1H, J = 7.6, 2.9 Hz, H-3), 4.32 (dd, 1H, J = 7.6, 1.7 Hz, H-4), 3.79–3.89 (m, 3H, H-5, H-6a, H-6b), 3.75 (dt, 1H, J = 9.7, 6.7 Hz, octyl OCH₂), 3.39 (dt, 1H, J = 9.7, 6.9 Hz, octyl OCH₂), 2.16 (s, 3H, C(O)CH₃), 1.50–1.60 (m, 2H, octyl OCH₂CH₂), 1.44 (s, 3H, C(CH₃)₂), 1.20–1.34 (m, 13H, C(CH₃)₂, octyl CH₂), 1.06 (s, 9H, C(CH₃)₃), 0.88 (t, 3H, J = 6.9 Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 170.3 (C=O), 135.7 (2 x Ar), 135.6 (2 x Ar), 135.5 (2 x Ar), 127.6(1) (2 x Ar), 127.5(8) (4 x Ar), 110.5 (isopropylidene C), 97.4 (C-1), 74.1 (C-4), 72.3 (C-3), 70.9 (C-2), 70.7 (C-5), 67.9 (octyl OCH₂), 62.6 (C-6), 31.8 (octyl CH₂), 29.5 (octyl CH₂), 29.4 (octyl CH₂), 29.3 (octyl CH₂), 26.8 (C(CH₃)₃), 26.1 (C(CH₃)₂), 26.0 (octyl CH₂), 25.3 (C(CH₃)₂), 22.6 (octyl CH₂), 21.1 (C(O)CH₃), 19.2 (C(CH₃)₃), 14.1 (octyl CH₃). HRMS (ESI) calcd. for (M + Na) C₃₅H₅₂O₇Si: 635.3375. Found: 635.3374.

Octyl 2,3,4-tri-*O*-benzoyl-6-*O*-*tert*-butyldiphenylsilyl- α -D-mannopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl- α -D-mannopyranoside (26)

Thioglycoside **11**³ (4.12 g, 4.9 mmol), alcohol **10**⁴ (2.30 g, 4.1 mmol), and powdered 4 Å molecular sieves (2.5 g) were dried overnight under vacuum with P₂O₅. Dry CH₂Cl₂ (100 mL) was added and the reaction mixture was cooled to 0 °C before the addition of *N*-iodosuccinimide (1.5 g, 6.2 mmol) and TMSOTf (0.22 mL, 1.2 mmol). The mixture was stirred for 1 h at 0 °C and neutralized with triethylamine, before being filtered through Celite and concentrated. The crude residue was purified by chromatography (6:1 hexane–EtOAc) to give **26** (4.45 g, 85%) as a pale yellow oil. *R*_f 0.26 (6:1 hexane–EtOAc); $[\alpha]_D = -30.2$ (*c* 3.0, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ_H 8.13–8.17 (m, 2H, ArH), 7.83–7.91 (m, 4H, ArH), 7.72–7.76 (m, 2H, ArH), 7.56–7.61 (m, 3H, ArH), 7.51–

7.55 (m, 1H, ArH), 7.18–7.46 (m, 26H, ArH), 7.13–7.17 (m, 2H, ArH), 6.18 (dd, 1H, J = 10.2, 10.2 Hz, H-4'), 5.88 (dd, 1H, J = 10.2, 3.3 Hz, H-3'), 5.77 (dd, 1H, J = 3.3, 1.8 Hz, H-2'), 5.23 (d, 1H, J = 1.8 Hz, H-1'), 5.02 (d, 1H, J = 11.4 Hz, PhCH₂), 4.84 (d, 1H, J = 1.4 Hz, PhCH₂), 4.84 (d, 2H, J = 1.4 Hz, PhCH₂), 4.84 1.8 Hz, H-1), 4.75 (d, 1H, J = 12.0 Hz, PhCH₂), 4.71 (d, 1H, J = 12.0 Hz, PhCH₂), 4.69 (d, 1H, J = 11.4 Hz, PhCH₂), 4.65 (s, 2H, PhCH₂), 4.22 (ddd, 1H, J = 10.2, 3.0, 3.0 Hz, H-5'), 3.92–3.98 (m, 3H, H-3, H-4, H-6a), 3.83–3.89 (m, 2H, H-5, H-6b), 3.83 (d, 2H, J = 3.0 Hz, H-6a', H-6b'), 3.80 (dd, 1H, J = 2.4, 1.8 Hz, H-2), 3.76 (dt, 1H, J = 9.6, 6.6 Hz, octyl OCH₂), 3.42 (dt, 1H, J = 9.6, 6.6 Hz, octyl OCH₂), 1.54–1.63 (m, 2H, octyl OCH_2CH_2), 1.18–1.40 (m, 10H, octyl CH_2), 1.07 (s, 9H, $C(CH_3)_3$), 0.84 (t, 3H, J = 6.6Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 165.4 (C=O), 165.3 (C=O), 165.2 (C=O), 138.5 (Ar), 138.5 (Ar), 138.5 (Ar), 135.8 (2C, Ar), 135.8 (2C, Ar), 133.1 (Ar), 133.0 (Ar), 132.8 (Ar), 130.0 (Ar), 129.8, 129.7(0), 129.6(7), 129.6, 129.5(2), 129.4(9), 129.4(6), 128.5, 128.3(7), 128.3(3), 128.3(0), 128.2(6), 128.1(7), 127.8(4), 127.8(2), 127.7, 127.6, 127.5, 127.4(7) (37C, Ar), 97.7(1) (C-1'/C-1, ${}^{1}J_{C,H}$ = 172.3 Hz), 97.6(6) (C-1'/C-1, ${}^{1}J_{C,H}$ = 168.8 Hz), 80.6 (C-3), 75.0 (PhCH₂), 74.9(4) (C-2), 74.9(0) (C-4), 72.6 (PhCH₂), 72.1 (PhCH₂), 71.4 (C-5), 71.2 (C-5'), 70.8 (C-2'), 70.7 (C-3'), 67.8 (octyl OCH₂), 66.8(7) (C-6), 66.8(1) (C-4'), 62.5 (C-6'), 31.8 (octyl CH₂), 29.5 (2C, octyl CH₂), 29.3 (octyl CH₂), 26.7 (C(CH₃)₃), 26.2 (octyl CH₂), 22.7 (octyl CH₂), 19.2 (C(CH₃)₃), 14.1 (octyl CH₃). HRMS (ESI) calcd. for (M + Na) C₇₈H₈₆O₁₄Si: 1297.5679. Found: 1297.5683.

Octyl 2,3,4-tri-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-benzyl- α -D-mannopyranoside (27)

Silvlated disaccharide 26 (4.0 g, 3.1 mmol) was dissolved in THF (25 mL) and 70% HF pyridine (2 mL) and pyridine (5 mL) were added and the solution was stirred overnight. The crude product was then diluted with CH₂Cl₂ (150 mL), washed with H₂O (50 mL), 1 M HCl (2 x 50 mL), and satd aq NaHCO₃ (50 mL). The organic layer was dried (Na_2SO_4), filtered, concentrated and the residue was purified by chromatography to give **27** as a colorless oil (2.2 g, 66%): R_f 0.34 (3:1 hexane–EtOAc); $[\alpha]_D$ = -28.3 (c 0.4, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 8.09–8.13 (m, 2H, ArH), 7.93–7.97 (m, 2H, ArH), 7.78–7.83 (m, 2H, ArH), 7.59–7.64 (m, 1H, ArH), 7.47–7.56 (m, 3H, ArH), 7.20– 7.44 (m, 20H, ArH), 6.00 (dd, 1H, J = 10.2, 3.6 Hz, H-3'), 5.81 (dd, 1H, J = 10.2, 10.2 Hz, H-4'), 5.74 (dd, 1H, J = 3.6, 1.8 Hz, H-2'), 5.21 (d, 1H, J = 1.8 Hz, H-1'), 5.04 (d, 1H, J = 10.6 Hz, PhCH₂), 4.82 (d, 1H, J = 1.8 Hz, H-1), 4.77 (d, 1H, J = 12.6 Hz, PhCH₂), 4.72 (d, 1H, J = 12.6 Hz, PhCH₂), 4.69 (d, 1H, J = 11.6 Hz, PhCH₂), 4.65 (s, 2H, $PhCH_2$, 4.11 (ddd, 1H, J = 10.2, 3.6, 3.0 Hz, H-5'), 3.92–3.98 (m, 3H, H-3, H-4, H-6a), 3.82–3.89 (m, 2H, H-5, H-6b), 3.79 (dd, 1H, J = 2.4, 1.8 Hz, H-2), 3.71–3.80 (m, 2H, H-6a', octyl OCH₂), 3.66 (ddd, 1H, J = 12.6, 6.0, 3.6 Hz, H-6b'), 3.40 (dt, 1H, J = 9.6, 6.6 Hz, octyl OCH₂), 2.59 (dd, 1H, J = 8.4, 6.0 Hz, OH), 1.52–1.64 (m, 2H, octyl OCH₂CH₂), 1.18–1.40 (m, 10H, octyl CH₂), 0.85 (t, 3H, J = 7.2 Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 166.5 (C=O), 165.3 (C=O), 165.2 (C=O), 138.4(9) (Ar), 138.4(8) (Ar), 138.4(2) (Ar), 133.6 (Ar), 133.4 (Ar), 133.0 (Ar), 129.9(3), 129.8(8), 129.7, 129.5, 129.3, 128.9, 128.6, 128.5, 128.4, 128.3(4), 128.2(9), 128.2, 127.8, 127.7, 127.6, 127.5 (30C, Ar), 97.8 (C-1'/C-1), 97.7 (C-1'/C-1), 80.5 (C-3), 75.0 (PhCH₂), 74.9 (C-2/C-4), 74.8 (C-2/C-4), 72.7 (PhCH₂), 72.1 (PhCH₂), 71.2 (C-5), 70.8 (C-5'), 70.6 (C-2'), 69.6 (C-3'), 67.8 (octyl OCH₂), 67.5 (C-4'), 67.2 (C-6), 61.3 (C-6'), 31.8 (octyl CH₂), 29.5 (2C, octyl CH₂), 29.3 (octyl CH₂), 26.2 (octyl CH₂), 22.7 (octyl CH₂), 14.1 (octyl CH₃). HRMS (ESI) calcd. for (M + Na) C₆₂H₆₈O₁₄: 1059.4501. Found: 1059.4488.

Octyl 2,3,4-tri-*O*-benzoyl-6-*O*-*p*-toluenesulfonyl- α -D-mannopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl- α -D-mannopyranoside (28)

Disaccharide 27 (155 mg, 0.15 mmol) was dissolved in pyridine (2 mL) and the solution was cooled to 0 °C in an ice bath followed by the addition of *p*-toluenesulfonyl chloride (58 mg, 0.30 mmol). The reaction mixture was stirred overnight and then was diluted with CH₂Cl₂ (25 mL), washed with 1 M HCl (3 x 10 mL), satd aq NaHCO₃ (10 mL) and H₂O (10 mL). The organic layer was dried (MgSO₄), concentrated and the crude product was then purified by chromatography (3:1 hexane-EtOAc) to give 28 as a colorless oil (162 mg, 91%): $R_f 0.36$ (3:1 hexane–EtOAc); $[\alpha]_D = -22.9$ (*c* 0.4, CH₂Cl₂): ¹H NMR (600 MHz, CDCl₃) δ_H 8.06–8.09 (m, 2H, ArH), 7.82–7.86 (m, 2H, ArH), 7.77–7.81 (m, 2H, ArH), 7.72–7.76 (m, 2H, ArH), 7.59–7.64 (m, 1H, ArH), 7.46–7.54 (m, 3H, ArH), 7.18– 7.44 (m, 20H, ArH), 7.13–7.17 (m, 2H, ArH), 5.84 (dd, 1H, J = 10.0, 2.9 Hz, H-3'), 5.81 (dd, 1H, J = 10.0, 10.0 Hz, H-4'), 5.68 (dd, 1H, J = 2.9, 2.0 Hz, H-2'), 5.12 (d, 1H, J = 2.0 Hz, H-1'), 5.02 (d, 1H, J = 11.3 Hz, PhCH₂), 4.84 (d, 1H, J = 1.9 Hz, H-1), 4.77 (d, 1H, J = 12.5 Hz, PhCH₂), 4.73 (d, 1H, J = 12.5 Hz, PhCH₂), 4.68 (d, 1H, J = 11.3 Hz, PhCH₂), 4.65 (s, 2H, PhCH₂), 4.37 (ddd, 1H, J = 10.0, 4.9, 2.4 Hz, H-5'), 4.27 (dd, 1H, J = 11.0, 2.4 Hz, H-6a'), 4.16 (dd, 1H, J = 11.0, 4.9 Hz, H-6b'), 3.91–3.98 (m, 2H, H-3, H-4), 3.89 (dd, 1H, J = 11.1, 5.9 Hz, H-6a), 3.80–3.87 (m, 2H, H-5, H-6b), 3.80 (dd, 1H, J = 2.0, 1.9 Hz, H-2), 3.74 (dt, 1H, J = 9.7, 6.7 Hz, octyl OCH₂), 3.40 (dt, 1H, J = 9.7, 6.5 Hz, octyl OCH₂), 2.30 (s, 3H, tosyl CH₃), 1.52–1.62 (m, 2H, octyl OCH₂CH₂), 1.18–1.40

(m, 10H, octyl CH₂), 0.84 (t, 3H, J = 6.9 Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 165.2 (C=O), 165.1(7) (C=O), 165.0(8) (C=O), 144.5 (Ar), 138.4(9) (Ar), 138.4(7) (Ar), 138.4(5) (Ar), 133.4 (Ar), 133.3 (Ar), 133.0 (Ar), 132.7 (Ar), 130.0, 129.7, 129.6, 129.4, 129.2, 129.0, 128.6, 128.4, 128.3(4), 128.2(8), 128.2(0), 128.1, 127.9(2), 127.8(6), 127.7, 127.5(3), 127.5(1) (34C, Ar), 97.7 (C-1), 97.5 (C-1'), 80.4 (C-3), 75.1 (PhCH₂), 74.8 (2C, C-2, C-4), 72.7 (PhCH₂), 72.1 (PhCH₂), 71.3 (C-5), 70.3 (C-2'), 69.8 (C-3'), 68.6 (C-5'), 68.0 (C-6'), 67.8 (octyl OCH₂), 67.3 (C-6), 66.9 (C-4'), 31.8 (octyl CH₂), 29.5 (2C, octyl CH₂), 29.3 (octyl CH₂), 26.2 (octyl CH₂), 22.7 (octyl CH₂), 21.5 (tosyl CH₃), 14.1 (octyl CH₃). HRMS (ESI) calcd. for (M + Na) C₆₉H₇₄O₁₆S: 1213.4590. Found: 1213.4593.

Octyl 6-azido-2,3,4-tri-O-benzoyl-6-deoxy- α -D-mannopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-benzyl- α -D-mannopyranoside (29)

Tosylated disaccharide **28** (136 mg, 0.12 mmol) was dissolved in DMF (2 mL) and sodium azide (68 mg, 1.0 mmol) was added and the solution was heated under reflux for 6 h. The crude solution was then diluted with EtOAc (25 mL) and washed with H₂O (10 mL). The organic phase was dried (Na₂SO₄), filtered, concentrated and the residue was purified by chromatography (6:1 hexane–EtOAc) to give **29** as a colorless oil (119 mg, 98%): $R_{\rm f}$ 0.31 (6:1 hexane–EtOAc); [α]_D = +3.5 (*c* 1.3, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 8.10–8.14 (m, 2H, ArH), 7.90–7.95 (m, 2H, ArH), 7.78–7.83 (m, 2H, ArH), 7.60–7.65 (m, 1H, ArH), 7.48–7.55 (m, 3H, ArH), 7.18–7.45 (m, 20H, ArH), 5.89 (dd, 1H, *J* = 9.9, 3.2 Hz, H-3'), 5.84 (dd, 1H, *J* = 9.9, 9.9 Hz, H-4'), 5.73 (dd, 1H, *J* = 3.2, 1.8 Hz, H-2'), 5.20 (d, 1H, *J* = 1.8 Hz, H-1'), 5.03 (d, 1H, *J* = 11.3 Hz, PhCH₂), 4.83 (d, 1H, *J*

= 1.7 Hz, H-1), 4.76 (d, 1H, J = 11.2 Hz, PhCH₂), 4.71 (d, 1H, J = 11.3 Hz, PhCH₂), 4.69 (d, 1H, J = 11.2 Hz, PhCH₂), 4.64 (s, 2H, PhCH₂), 4.33 (ddd, 1H, J = 9.9, 6.5, 3.2 Hz, H-5'), 3.95–4.04 (m, 3H, H-3, H-4, H-6a), 3.90 (dd, 1H, J = 11.1, 1.7 Hz, H-6b), 3.84–3.89 (m, 1H, H-5), 3.79 (dd, 1H, J = 2.2, 1.7 Hz, H-2), 3.74 (dt, 1H, J = 9.7, 6.9 Hz, octyl OCH₂), 3.38–3.48 (m, 3H, H-6a', H-6b', octyl OCH₂), 1.53–1.64 (m, 2H, octyl OCH_2CH_2 , 1.18–1.40 (m, 10H, octyl CH₂), 0.85 (t, 3H, J = 6.9 Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 165.6 (C=O), 165.2 (C=O), 165.1 (C=O), 138.4(9) (2C, Ar), 138.4(5) (Ar), 133.4(4) (Ar), 133.4(1) (Ar), 133.0 (Ar), 129.9 (Ar), 129.8, 129.7, 129.5, 129.2, 129.0, 128.6, 128.4(4), 128.4(1), 128.3(5), 128.2(9), 128.2, 127.9, 127.8, 127.7, 127.6, 127.5(4), 127.5(3) (29C, Ar), 97.7 (C-1), 97.6 (C-1'), 80.5 (C-3), 75.1 (PhCH₂), 74.9 (C-2/C-4), 74.8 (C-2/C-4), 72.7 (PhCH₂), 72.1 (PhCH₂), 71.3 (C-5), 70.4 (C-2'/C-5'), 70.1 (C-2'/C-5'), 69.7 (C-3'), 68.0 (C-4'), 67.8 (octyl OCH₂), 67.3 (C-6), 51.2 (C-6'), 31.8 (octyl CH₂), 29.5 (2C, octyl CH₂), 29.3 (octyl CH₂), 26.2 (octyl CH₂), 22.7 (octyl CH₂), 14.1 (octyl CH₃). HRMS (ESI) calcd. for (M + Na) C₆₂H₆₇N₃O₁₃: 1084.4566. Found: 1084.4569. FTIR: 2102.3 cm⁻¹.

Octyl 2,3,4-tri-*O*-benzoyl-6-deoxy-6-trifluoroacetamido- α -D-mannopyranosyl-(1 \rightarrow 6)- α -D-mannopyranoside (30)

Azide **29** (50 mg, 0.047 mmol) was dissolved in pyridine (3 mL) and 20% Pd(OH)₂–C (10 mg) was added. The mixture was stirred for 4.5 h under a H₂ atmosphere and the catalyst was separated by filtration through a short pad of Celite. The filtrate was concentrated and the residue was redissolved in pyridine (2 mL) before trifluoroacetic anhydride (16 μ L, 0.11 mmol) was added dropwise at 0 °C. The mixture was slowly

warmed to rt and stirred overnight. The solution was then diluted with EtOAc (25 mL), washed with H₂O (10 mL) and satd aq NaHCO₃ (10 mL). The organic layer was dried (Na₂SO₄), concentrated and the resulting crude product was then redissolved in MeOH (6 mL) and 20% Pd(OH)₂-C (10 mg) was added. The mixture was stirred overnight under a H₂ atmosphere and the catalyst was separated by filtration through a short pad of Celite. The filtrate was concentrated and the residue purified by chromatography (15:1 CH₂Cl₂-MeOH) to give **30** as a clear glass (28 mg, 68%): R_f 0.35 (15:1 CH₂Cl₂-MeOH); $[\alpha]_D = -29.3$ (c 0.2, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ_H 8.02–8.07 (m, 2H, ArH), 7.93–7.98 (m, 2H, ArH), 7.78–7.82 (m, 2H, ArH), 7.60–7.65 (m, 1H, ArH), 7.46– 7.55 (m, 3H, ArH), 7.36–7.45 (m, 3H, ArH), 7.23–7.27 (m, 3H, ArH, C(O)NH), 5.96 (dd, 1H, J = 10.1, 3.4 Hz, H-3'), 5.75 (dd, 1H, J = 3.4, 1.8 Hz, H-2'), 5.70 (dd, 1H, J = 10.1, 10.1 Hz, H-4'), 5.25 (d, 1H, J = 1.8 Hz, H-1'), 4.87 (d, 1H, J = 1.3 Hz, H-1), 4.41 (ddd, 1H, J = 10.1, 4.9, 2.7 Hz, H-5'), 4.10 (dd, 1H, J = 11.4, 4.5 Hz, H-6a), 3.92–3.98 (m, 3H, H-6a', H-2, H-4), 3.92 (dd, 1H, J = 11.4, 1.9 Hz, H-6b), 3.85 (dd, 1H, J = 9.9, 3.0 Hz, H-3), 3.79 (dd, 1H, J = 9.9, 3.0, 1.9 Hz, H-5), 3.73 (dt, 1H, J = 9.7, 6.7 Hz, octyl OCH₂), 3.41-3.50 (m, 2H, H-6b', octyl OCH₂), 3.03 (br s, 2H, OH), 1.83 (br s, 1H, OH), 1.54-1.64 (m, 2H, octyl OCH₂CH₂), 1.18–1.42 (m, 10H, octyl CH₂), 0.86 (t, 3H, J = 6.9 Hz, octvl CH₃); ¹³C NMR (125 MHz, CDCl₃) δ_C 166.5 (C=O), 165.6 (C=O), 165.4 (C=O), 157.5 (CF₃C=O, ${}^{2}J_{C=O,F}$ = 37.1 Hz), 133.8 (Ar), 133.7(7) (Ar), 133.4 (Ar), 129.9 (2C, Ar), 129.8 (2C, Ar), 129.7 (2C, Ar), 129.0 (Ar), 128.8 (Ar), 128.7 (2C, Ar), 128.6 (2C, Ar), 128.4 (2C, Ar), 128.3(5) (Ar), 116.0 (CF_3 , ¹J = 287.4 Hz), 99.9 (C-1), 97.7 (C-1'), 72.3 (C-3), 71.1 (C-5), 71.0 (C-2), 70.5 (C-2'), 69.4 (C-3'), 68.7 (C-4), 68.1 (octyl OCH₂), 67.8(3) (C-4'), 67.8(1) (C-5'), 67.8 (C-6), 39.7 (C-6'), 31.8 (octyl CH₂), 29.4 (2C, octyl CH₂), 29.3 (octyl CH₂), 26.2 (octyl CH₂), 22.6 (octyl CH₂), 14.1 (octyl CH₃); ¹⁹F NMR (376.1 MHz, CDCl₃) $\delta_{\rm F}$ –76.2 (s, 3F). HRMS (ESI) calcd. for (M + Na) C₄₃H₅₀NO₁₄F₃: 884.3076. Found: 884.3078.

Octyl 2,3,4-tri-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-benzyl- α -D-

mannopyranoside (31)

Thioglycoside **15** (110 mg, 0.14 mmol), alcohol **10**⁴ (65 mg, 0.12 mmol), and powdered 4 Å molecular sieves (100 mg) were dried overnight under vacuum with P_2O_5 . Dry CH₂Cl₂ (4 mL) was added and the solution was cooled to 0 °C before the addition of Niodosuccinimide (41 mg, 0.17 mmol) and TMSOTf (6 µL, 0.035 mmol). The mixture was stirred for 1 h at 0 °C and neutralized with triethylamine, before being filtered through Celite and concentrated. The crude product was partially purified by chromatography (9:1 hexane–EtOAc) to give the desired disaccharide as a mixture of α and β isomers (5:1). The silvlated disaccharide mixture was then dissolved in THF (2 mL) and and 1.0 M tetra-n-butylammonium fluoride in THF (0.31 mL, 0.31 mmol) was added and the solution was stirred at rt overnight. The solvent was evaporated and the residue was purified by chromatography (3:1 hexane-EtOAc) to give **31** (59 mg, 50%) as a colorless oil. R_f 0.32 (3:1 hexane-EtOAc); $[\alpha]_D$ = +33.5 (c 1.2, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.18–7.40 (m, 30H, ArH), 5.11 (d, 1H, J = 3.5 Hz, H-1'), 4.92 (d, 1H, J = 11.0 Hz, PhCH₂), 4.88 (d, 1H, J = 11.1 Hz, PhCH₂), 4.87 (d, 1H, J = 11.2 Hz, PhCH₂), 4.81 (d, 1H, J = 1.7 Hz, H-1), 4.75 (d, 1H, J = 11.0 Hz, PhCH₂), 4.62-4.72 (m, 7H, PhCH₂),9.2, 9.2 Hz, H-3'), 3.92 (dd, 1H, J = 9.6, 3.2 Hz, H-3), 3.75–3.89 (m, 6H, H-5', H-6a', H-

S20

2, H-5, H-6a, H-6b), 3.62-3.72 (m, 2H, H-6b', octyl OCH₂), 3.51 (dd, 1H, J = 9.2, 9.2 Hz, H-4'), 3.47 (dd, 1H, J = 9.2, 3.5 Hz, H-2'), 3.33 (dt, 1H, J = 9.6, 6.7 Hz, octyl OCH₂), 1.72 (dd, 1H, J = 7.7, 4.9 Hz, OH), 1.46-1.54 (m, 2H, octyl OCH₂CH₂), 1.20-1.34 (m, 10H, octyl CH₂), 0.87 (t, 3H, J = 6.9 Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) δ_{C} 138.9 (Ar), 138.8 (Ar), 138.7 (Ar), 138.4(2) (Ar), 138.4(0) (Ar), 138.3 (Ar), 128.4, 128.3, 128.2(9), 128.2(8), 128.2(2), 128.1(9), 128.0, 127.9(2), 127.9(1), 127.7, 127.6(3), 127.6(1), 127.5(3), 127.5(1), 127.5(0), 127.4(7) (30C, Ar), 97.8 (C-1), 96.3 (C-1'), 81.6 (C-3'), 80.4 (C-2'), 80.3 (C-3), 77.5 (C-4'), 75.5 (PhCH₂), 75.3 (C-2), 75.1(4) (PhCH₂), 75.1(0) (C-4), 74.9 (PhCH₂), 72.9 (PhCH₂), 72.6 (PhCH₂), 72.2 (PhCH₂), 72.0 (C-5'/C-5), 70.8 (C-5'/C-5), 67.7 (octyl OCH₂), 65.8 (C-6), 62.0 (C-6'), 31.8 (octyl CH₂), 29.4 (2C, octyl CH₂), 29.2 (octyl CH₂), 26.2 (octyl CH₂), 22.7 (octyl CH₂), 14.1 (octyl CH₃). HRMS (ESI) calcd. for (M + Na) C₆₂H₇₄O₁₁: 1017.5123. Found: 1017.5126.

Octyl 2,3,4-tri-*O*-benzyl-6-*O*-*p*-toluenesulfonyl- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl- α -D-mannopyranoside (32)

Disaccharide **31** (126 mg, 0.13 mmol) was dissolved in pyridine (3 mL) and the solution was cooled to 0°C in an ice bath followed by the addition of *p*-toluenesulfonyl chloride (49 mg, 0.25 mmol). The reaction mixture was stirred overnight and then the mixture was diluted with CH₂Cl₂ (25 mL), washed with 1 M HCl (3 x 10 mL), satd aq NaHCO₃ (10 mL), and H₂O (10 mL). The organic layer was dried (MgSO₄), concentrated and the crude product was then purified by chromatography (6:1 hexane–EtOAc) to give **31** (129 mg, 89%) as a colorless oil: R_f 0.27 (6:1 hexane–EtOAc); [α]_D = +43.1 (*c* 1.3, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 7.75–7.79 (m, 2H, ArH), 7.20–7.38 (m, 30H,

ArH), 7.12–7.16 (m, 2H, ArH), 5.02 (d, 1H, J = 3.4 Hz, H-1'), 4.92 (d, 1H, J = 11.0 Hz, PhCH₂), 4.90 (d, 1H, J = 11.2 Hz, PhCH₂), 4.83 (d, 1H, J = 10.8 Hz, PhCH₂), 4.79 (d, 1H, J = 1.8 Hz, H-1), 4.70 (d, 1H, J = 11.0 Hz, PhCH₂), 4.61–4.69 (m, 6H, PhCH₂), 4.55 (d, 1H, J = 11.8 Hz, PhCH₂), 4.42 (d, 1H, J = 10.8 Hz, PhCH₂), 4.23 (dd, 1H, J = 10.6, 3.6 Hz, H-6a), 4.18 (dd, 1H, J = 10.6, 2.1 Hz, H-6b), 3.88–4.03 (m, 4H, H-3', H-5', H-3, H-5), 3.79 (dd, 1H, J = 3.1, 1.8 Hz, H-2), 3.74–3.80 (m, 2H, H-6a', H-6b', H-4), 3.64 (dt, 1H, J = 9.7, 6.8 Hz, octyl OCH₂), 3.48 (dd, 1H, J = 10.1, 9.0 Hz, H-4'), 3.45 (dd, 1H, J = 9.6, 3.4 Hz, H-2'), 3.32 (dt, 1H, J = 9.7, 6.6 Hz, octyl OCH₂), 2.38 (s, 3H, tosyl CH₃), 1.44–1.54 (m, 2H, octyl OCH₂CH₂), 1.20–1.34 (m, 10H, octyl CH₂), 0.87 (t, 3H, J = 6.9Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 144.7 (Ar), 138.7 (Ar), 138.6(9) (Ar), 138.6(4) (Ar), 138.3(4) (Ar), 138.2(7) (Ar), 138.1 (Ar), 133.0 (Ar), 129.8, 128.4, 128.3(1), 128.3(0), 128.3, 128.2, 128.1, 128.0, 127.9, 127.7, 127.6(3), 127.6(0), 127.5(4), 127.5(1), 127.4(9) (34C, Ar), 97.8 (C-1), 96.4 (C-1'), 81.5 (C-3'), 80.5 (C-3), 79.9 (C-2'), 76.8 (C-4'), 75.4 (PhCH₂), 75.3 (C-2), 75.0(8) (C-5'), 75.0(6) (PhCH₂), 74.8 (PhCH₂), 72.9 (PhCH₂), 72.5 (PhCH₂), 72.2 (PhCH₂), 71.8 (C-4), 68.6(2) (C-6), 68.5(6) (C-5), 67.7 (octyl OCH₂), 66.1 (C-6'), 31.8 (octyl CH₂), 29.4(5) (octyl CH₂), 29.4(2) (octyl CH₂), 29.2 (octyl CH₂), 26.2 (octyl CH₂), 22.7 (octyl CH₂), 21.6 (tosyl CH₃), 14.1 (octyl CH₃). HRMS (ESI) calcd. for (M + Na) C₆₉H₈₀O₁₃S: 1171.5212. Found: 1171.5210.

Octyl 6-amino-2,3,4-tri-O-benzyl-6-deoxy- α -D-glucopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-

benzyl- α -D-mannopyranoside (33)

Tosylated disaccharide **32** (100 mg, 0.093 mmol) was dissolved in DMF (2 mL) and sodium azide (54 mg, 0.84 mmol) was added and the solution was heated under reflux

for 6 h. The crude product was then diluted with EtOAc (25 mL) and washed with H₂O (10 mL). The organic layer was dried (Na₂SO₄), filtered, concentrated and the residue was purified by chromatography (6:1 hexane-EtOAc) to give 33 as a colorless oil (76 mg, 85%): R_f 0.36 (6:1 hexane–EtOAc); $[\alpha]_D$ = +58.6 (c 0.6, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) $\delta_{\rm H}$ 7.18–7.38 (m, 30H, ArH), 5.14 (d, 1H, J = 3.4 Hz, H-1'), 4.94 (d, 1H, J = 10.9 Hz, PhCH₂), 4.91 (d, 1H, J = 11.1 Hz, PhCH₂), 4.90 (d, 1H, J = 11.2 Hz, PhCH₂), 4.81 (d, 1H, J = 1.7 Hz, H-1), 4.73 (d, 1H, J = 10.9 Hz, PhCH₂), 4.70 (d, 1H, J = 10.9Hz, PhCH₂), 4.62–4.70 (m, 5H, PhCH₂), 4.57 (d, 1H, J = 11.1 Hz, PhCH₂), 4.56 (d, 1H, J = 11.8 Hz, PhCH₂), 4.06 (dd, 1H, J = 9.6, 9.6 Hz, H-3), 3.98 (dd, 1H, J = 9.4, 9.4 Hz, H-3'), 3.86–3.95 (m, 3H, H-5', H-4, H-6a), 3.84 (dd, 1H, J = 11.7, 1.5 Hz, H-6b), 3.77–3.82 (m, 2H, H-2, H-5), 3.65 (dt, 1H, J = 9.7, 6.8 Hz, octyl OCH₂), 3.51 (dd, 1H, J = 9.4, 3.4 Hz, H-2'), 3.42–3.48 (m, 2H, H-4', H-6a'), 3.30–3.36 (m, 2H, H-6b', octyl OCH₂), 1.45– 1.53 (m, 2H, octyl OCH₂CH₂), 1.20–1.34 (m, 10H, octyl CH₂), 0.87 (t, 3H, J = 6.9 Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 138.7(7) (Ar), 138.7(3) (Ar), 138.6(8) (Ar), 138.4 (Ar), 138.3 (Ar), 138.2 (Ar), 128.4, 128.3(1), 128.2(6), 128.2(2), 128.1, 128.0, 127.9(7), 127.9(4), 127.8, 127.7, 127.6(1), 127.5(8), 127.5(1), 127.4(8) (30C, Ar), 97.8 (C-1), 96.3 (C-1'), 81.4 (C-3'), 80.4 (C-4), 80.2 (C-2'), 78.3 (C-4'), 75.5 (PhCH₂), 75.3 (C-2), 75.1(4) (PhCH₂), 75.1(2) (C-3), 75.0 (PhCH₂), 72.8 (PhCH₂), 72.5 (PhCH₂), 72.2 (PhCH₂), 71.9 (C-5), 69.9 (C-5'), 67.6 (octyl OCH₂), 66.0 (C-6), 51.4 (C-6'), 31.8 (octyl CH₂), 29.4 (2C, octyl CH₂), 29.2 (octyl CH₂), 26.2 (octyl CH₂), 22.7 (octyl CH₂), 14.1 HRMS (ESI) calcd. for (M + Na) $C_{62}H_{73}N_3O_{10}$: 1042.5188. Found: (octyl CH_3). 1042.5188. FTIR: 2099.9 cm⁻¹.

S23

Octyl 6-deoxy-6-trifluoroacetamido- α -D-glucopyranosyl-(1 \rightarrow 6)- α -D-

mannopyranoside (34)

Azide 33 (67 mg, 0.066 mmol) was dissolved in pyridine (3 mL) and 20% Pd(OH)₂-C (17 mg) was added. The mixture was stirred overnight under a H_2 atmosphere and the catalyst was separated by filtration through a short pad of Celite. The filtrate was concentrated and the residue was redissolved in pyridine (2 mL) before trifluoroacetic anhydride (20 µL, 0.13 mmol) was added dropwise at 0 °C. The mixture was slowly warmed to rt and stirred overnight. The solution was then diluted with EtOAc (25 mL), washed with H_2O (10 mL) and satd aq NaHCO₃ (10 mL). The organic layer was dried (Na₂SO₄), concentrated and the resulting crude product was then redissolved in MeOH (6 mL) and 20% Pd(OH)₂-C (15 mg) was added. The mixture was stirred overnight under a H₂ atmosphere and the catalyst was separated by filtration through a short pad of Celite. The filtrate was concentrated and the residue purified by chromatography (8:1 CH_2CI_2 –MeOH) to give **34** as a clear glass (26 mg, 72%): R_f 0.24 (8.1 CH₂CI₂–MeOH); $[\alpha]_{\rm D}$ = +74.4 (c 0.4, CH₃OH); ¹H NMR (600 MHz, CD₃OD) $\delta_{\rm H}$ 4.82 (d, 1H, J = 3.7 Hz, H-1'), 4.71 (d, 1H, J = 1.5, 1.8 Hz, H-1), 3.96 (dd, 1H, J = 10.7, 4.0 Hz, H-6a), 3.74–3.80 (m, 3H, H-5', H-2, H-4), 3.60-3.73 (m, 5H, H-3', H-6a', H-3, H-5, octyl OCH₂), 3.58 (dd, 1H, J = 10.7, 2.2 Hz, H-6b), 3.48 (dd, 1H, J = 14.0, 7.8 Hz, H-6b'), 3.40 (dt, 1H, J = 9.7, 6.4 Hz, octyl OCH₂), 3.37 (dd, 1H, J = 9.7, 3.7 Hz, H-2'), 3.12 (dd, 1H, J = 9.9, 8.9 Hz, H-4'), 1.52–1.62 (m, 2H, octyl OCH₂CH₂), 1.24–1.42 (m, 10H, octyl CH₂), 0.89 (t, 3H, J = 6.9 Hz, octyl CH₃); ¹³C NMR (125 MHz, CD₃OD) $\delta_{\rm C}$ 159.3 (CF₃C=O, ²J_{C=O,F} = 37.1 Hz), 117.6 (CF_{3} , ¹J = 285.9 Hz),101.8 (C-1), 99.7 (C-1'), 75.0 (C-3'), 73.8 (C-2'), 73.6 (C-4'), 72.8(3) (C-3), 72.8(2) (C-5), 72.2 (C-2), 71.1 (C-5'), 68.8 (octyl OCH₂), 68.3 (C-

4), 67.1 (C-6), 42.1 (C-6'), 33.0 (octyl CH₂), 30.6 (octyl CH₂), 30.5 (octyl CH₂), 30.4 (octyl CH₂), 27.4 (octyl CH₂), 23.7 (octyl CH₂), 14.4 (octyl CH₃); ¹⁹F NMR (376.1 MHz, CDCl₃) $\delta_{\rm F}$ –77.5 (s, 3F). HRMS (ESI) calcd. for (M + Na) C₂₂H₃₈NO₁₁F₃: 572.2289. Found: 572.2286.

Octyl 2,3,4,-tri-O-benzoyl-6-O-(*tert*-butyldiphenylsilyl)-α-D-mannopyranosyl-

$(1 \rightarrow 6)$ -2-O-acetyl-3,4-O-isopropylidene- α -D-talopyranoside (35)

Thioglycoside **11⁵** (186 mg, 0.20 mmol), alcohol **14** (55 mg, 0.15 mmol), and powdered 4 Å molecular sieves (100 mg) were dried overnight under vacuum with P_2O_5 . Dry CH₂Cl₂ (4 mL) was added and the solution was cooled to 0 °C before the addition of Niodosuccinimide (53 mg, 0.23 mmol) and TMSOTf (8 µL, 0.045 mmol). The mixture was stirred for 1 h at 0 °C and neutralized with triethylamine, before being filtered through Celite and concentrated. The crude product was purified by chromatography (4:1 hexane-EtOAc) to give 35 as a colorless oil (144 mg, 90%): Rf 0.21 (4:1 hexane-EtOAc); $[\alpha]_D = -47.1$ (c 0.3, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ_H 8.11–8.16 (m, 2H, ArH), 7.83–7.94 (m, 4H, ArH), 7.70–7.75 (m, 2H, ArH), 7.51–7.62 (m, 3H, ArH), 7.25– 7.46 (m, 12H, ArH), 7.12–7.17 (m, 2H, ArH), 6.20 (dd, 1H, J = 10.2, 10.2 Hz, H-4'), 5.82 (dd, 1H, J = 10.2, 3.3 Hz, H-3'), 5.73 (dd, 1H, J = 3.3, 1.8 Hz, H-2'), 5.16 (d, 1H, J = 1.8 Hz, H-1'), 5.01 (dd, 1H, J = 5.7, 3.0 Hz, H-2), 4.91 (d, 1H, J = 5.7 Hz, H-1), 4.64 (dd, 1H, J = 7.8, 3.0 Hz, H-3), 4.41 (dd, 1H, J = 7.8, 1.8 Hz, H-4), 4.20–4.25 (m, 1H, H-5'), 4.02– 4.07 (m, 1H, H-5), 3.82-3.97 (m, 4H, H-6a', H-6b', H-6a, octyl OCH₂), 3.76 (dd, 1H, J = 10.2, 6.0 Hz, H-6b), 3.46 (dd, 1H, J = 9.6, 6.6 Hz, octyl OCH₂), 2.05 (s, 3H, C(O)CH₃), 1.54–1.64 (m, 2H, octyl CH₂), 1.48 (s, 3H, C(CH₃)₂), 1.36 (s, 3H, C(CH₃)₂), 1.10–1.34

(m, 10H, octyl CH₂), 1.08 (s, 9H, C(CH₃)₃), 0.80 (t, 3H, J = 7.2 Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 170.2 (C=O), 165.5 (C=O), 165.4 (C=O), 165.2 (C=O), 135.8 (2C, Ar), 135.5 (2C, Ar), 133.3 (Ar), 133.1(1) (Ar), 133.0(7) (Ar), 133.0(0) (Ar), 129.9(9) (2C, Ar), 129.8 (2C, Ar), 129.7(3) (2C, Ar), 129.7(0) (2C, Ar), 129.6 (Ar), 129.5 (Ar), 129.4 (Ar), 129.3 (Ar), 128.5 (2C, Ar), 128.3 (2C, Ar), 128.2 (2C, Ar), 127.6 (2C, Ar), 127.5 (2C, Ar), 110.8 (C(CH₃)₂), 97.5 (C-1, ¹ $J_{C,H} = 173.0$ Hz), 97.3 (C-1', ¹ $J_{C,H} = 172.2$ Hz), 74.0 (C-4), 72.3 (C-3), 71.4 (C-5'), 70.7 (C-2, C-3'), 70.5 (C-2'), 68.3 (C-5), 68.1 (octyl OCH₂), 66.5 (C-4'), 66.0 (C-6), 62.4 (C-6'), 31.8 (octyl CH₂), 29.5 (octyl CH₂), 29.4 (octyl CH₂), 29.3 (octyl CH₂), 26.7 (C(CH₃)₃), 26.1(0) (C(CH₃)₂), 26.0(7) (octyl CH₂), 25.3 (C(CH₃)₂), 22.6 (octyl CH₂), 21.1 (C(O)CH₃), 19.2 (C(CH₃)₃), 14.0 (octyl CH₃). HRMS (ESI) calcd. for (M + Na) C₆₂H₇₄O₁₅Si: 1109.4689. Found: 1109.4695.

Octyl 2,3,4,-tri-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 6)-2-O-acetyl-3,4-O-

isopropylidene- α -D-talopyranoside (36)

Disaccharide **35** (137 mg, 0.13 mmol) was dissolved in THF (4 mL) and then 70% HF·pyridine (0.2 mL) and pyridine (1 mL) were added. After stirring overnight, the crude product was then diluted with CH₂Cl₂ (50 mL), washed with H₂O (15 mL), 1 M HCl (2 x 15 mL), and satd aq NaHCO₃ (15 mL). The organic layer was dried (Na₂SO₄), filtered, concentrated, and the residue was purified by chromatography to give **36** as a colorless oil (82 mg, 77%): R_f 0.55 (1:1 hexane–EtOAc); $[\alpha]_D = -42.0$ (*c* 0.3, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ_H 8.08–8.12 (m, 2H, ArH), 7.94–7.98 (m, 2H, ArH), 7.79–7.84 (m, 2H, ArH), 7.59–7.64 (m, 1H, ArH), 7.46–7.60 (m, 3H, ArH), 7.36–7.45 (m, 3H, ArH), 7.23–7.28 (m, 2H, ArH), 5.93 (dd, 1H, *J* = 10.1, 3.4 Hz, H-3'), 5.80 (dd, 1H, *J* = 10.1,

10.1 Hz, H-4'), 5.67 (dd, 1H, J = 3.4, 1.7 Hz, H-2'), 5.15 (d, 1H, J = 1.7 Hz, H-1'), 4.98 (dd, 1H, J = 6.2, 2.9 Hz, H-2), 4.90 (d, 1H, J = 6.2 Hz, H-1), 4.62 (dd, 1H, J = 7.6, 2.9)Hz, H-3), 4.39 (dd, 1H, J = 7.6, 1.8 Hz, H-4), 4.18 (ddd, 1H, J = 10.1, 3.9, 2.2 Hz, H-5'), 4.05 (ddd, 1H, J = 7.0, 4.9, 1.8 Hz, H-5), 3.92 (dd, 1H, J = 10.4, 7.0 Hz, H-6a), 3.74-3.91 (m, 4H, H-6a', H-6b', H-6b, octyl OC H_2), 3.46 (dt, 1H, J = 9.7, 6.7 Hz, octyl OC H_2), 2.75 (dd, 1H, J = 8.4, 5.7 Hz, OH), 2.16 (s, 3H, C(O)CH₃), 1.57–1.65 (m, 2H, octyl CH₂), 1.51 (s, 3H, C(CH₃)₂), 1.34 (s, 3H, C(CH₃)₂), 1.14–1.54 (m, 10H, octvl CH₂), 0.83 (t, 3H, J = 6.8 Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 170.2 (C=O), 166.4 (C=O), 165.4 (C=O), 165.3 (C=O), 133.6 (Ar), 133.5 (Ar), 133.1 (Ar), 129.9(1) (2C, Ar), 129.8(6) (2C, Ar), 129.7 (2C, Ar), 129.3 (Ar), 129.2 (Ar), 128.8 (Ar), 128.6 (2C, Ar), 128.5 (2C, Ar), 128.3 (2C, Ar), 110.9 (C(CH₃)₂), 97.6 (C-1'/C-1), 97.5 (C-1'/C-1), 74.3 (C-4), 72.4 (C-3), 71.1 (C-5'), 70.6 (C-2'), 70.5 (C-2), 69.6 (C-3'), 68.7 (C-5), 68.3 (octyl OCH₂), 67.3 (C-4'), 66.7 (C-6), 61.5 (C-6'), 31.8 (octyl CH₂), 29.5 (octyl CH₂), 29.4 (octyl CH₂), 29.3 (octyl CH₂), 26.0(9) (C(CH₃)₂), 26.0(7) (octyl CH₂), 25.3 (C(CH₃)₂), 22.6 (octyl CH₂), 21.1 (C(O)CH₃), 14.0 (octyl CH₃). HRMS (ESI) calcd. for (M + Na) C₄₆H₅₆O₁₅: 871.3511. Found: 871.3508.

Octyl 6-azido-2,3,4,-tri-*O*-benzoyl-6-deoxy- α -D-mannopyranosyl-(1 \rightarrow 6)-2-*O*-acetyl-3,4-*O*-isopropylidene- α -D-talopyranoside (37)

Disaccharide **36** (86 mg, 0.10 mmol) was dissolved in pyridine (1 mL) and the solution was cooled to 0 °C in an ice bath followed by the addition of *p*-toluenesulfonyl chloride (50 mg, 0.25 mmol). The reaction mixture was stirred overnight and then diluted with CH_2Cl_2 (25 mL), washed with 1 M HCl (3 x 10 mL), satd aq NaHCO₃ (10 mL), and H_2O

(10 mL). The organic layer was dried (MgSO₄) and concentrated to colorless oil. The crude intermediate was dissolved in DMF (2 mL) and sodium azide (65 mg, 1.0 mmol) was added and the solution was heated under reflux for 4 h. The crude product was then diluted with EtOAc (25 mL) and washed with H₂O (10 mL). The organic layer was dried (Na_2SO_4), filtered, concentrated and the residue purified by chromatography (3:1 hexane–EtOAc) to give **37** as a colorless oil (74 mg, 84%): R_f 0.27 (3:1 hexane–EtOAc); $[\alpha]_{D} = -11.3$ (c 0.8, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ_{H} 8.08–8.14 (m, 2H, ArH), 7.91-7.96 (m, 2H, ArH), 7.78-7.83 (m, 2H, ArH), 7.59-7.65 (m, 1H, ArH), 7.47-7.55 (m, 3H, ArH), 7.35–7.45 (m, 3H, ArH), 7.23–7.29 (m, 2H, ArH), 5.82–5.88 (m, 2H, H-3', H-4'), 5.68 (dd, 1H, J = 2.8, 1.7 Hz, H-2'), 5.12 (d, 1H, J = 1.7 Hz, H-1'), 4.99 (dd, 1H, J = 6.2, 2.8 Hz, H-2), 4.93 (d, 1H, J = 6.2 Hz, H-1), 4.64 (dd, 1H, J = 7.6, 2.8 Hz, H-3), 4.40 (dd, 1H, J = 7.6, 1.8 Hz, H-4), 4.36 (ddd, 1H, J = 10.1, 6.4, 2.6 Hz, H-5'), 4.06 (ddd, 1H, J = 7.6, 7.2, 5.1 Hz, H-5), 3.99 (dd, 1H, J = 10.2, 7.2 Hz, H-6a), 3.88 (dt, 1H, J = 9.8, 6.5 Hz, octyl OCH₂), 3.79 (dd, 1H, J = 10.2, 5.1 Hz, H-6b), 3.47–3.56 (m, 2H, H-6a', octyl OCH_2), 3.44 (dd, 1H, J = 13.3, 2.6 Hz, H-6b'), 2.17 (s, 3H, C(O)CH₃), 1.57–1.66 (m, 2H, octyl CH₂), 1.54 (s, 3H, C(CH₃)₂), 1.36 (s, 3H, C(CH₃)₂), 1.12–1.38 (m, 10H, octyl CH₂), 0.82 (t, 3H, J = 6.8 Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 170.2 (C=O), 165.6 (C=O), 165.4 (C=O), 165.2 (C=O), 133.5 (2C, Ar), 133.1 (Ar), 129.9 (2C, Ar), 129.8 (2C, Ar), 129.7 (2C, Ar), 129.3 (Ar), 129.1 (Ar), 128.8 (Ar), 128.6 (2C, Ar), 128.5 (2C, Ar), 128.3 (2C, Ar), 111.0 (C(CH₃)₂), 97.6 (C-1), 97.2 (C-1'), 74.1 (C-4), 72.4 (C-3), 70.8 (C-2), 70.4 (C-5'), 70.2 (C-2'), 69.7 (C-5), 68.3 (C-3'), 68.2 (octyl OCH₂), 67.9 (C-4'), 66.4 (C-6), 51.3 (C-6'), 31.8 (octyl CH₂), 29.6 (octyl CH₂), 29.4 (octyl CH₂), 29.3 (octyl CH₂), 26.1 (octyl CH₂), 26.0 (C(CH₃)₂), 25.4 (C(CH₃)₂), 22.6 (octyl CH₂), 21.1 (C(O)CH₃), 14.0 (octyl CH₃). HRMS (ESI) calcd. for (M + Na) $C_{46}H_{55}N_3O_{14}$: 896.3576. Found: 896.3573. FTIR: 2102.6 cm⁻¹.

Octyl 2,3,4,6-tetra-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-benzyl- α -D-glucopyranoside (38)

Thioglycoside 12^5 (39 mg, 0.056 mmol), alcohol 16^6 (25 mg, 0.045 mmol), and powdered 4 Å molecular sieves (75 mg) were dried overnight under vacuum with P_2O_5 . Dry CH₂Cl₂ (3 mL) was added and the solution was cooled to 0 °C before the addition of *N*-iodosuccinimide (16 mg, 0.068 mmol) and TMSOTf (2 µL, 0.014 mmol). The mixture was stirred for 1 h at 0 °C and neutralized with triethylamine, before being filtered through Celite and concentrated. The crude product was purified by chromatography (4:1 hexane-EtOAc) to give **38** (47 mg, 92%) as a pale yellow oil. R_f 0.26 (4:1 hexane-EtOAc); $[\alpha]_D = +16.4$ (c 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ_H 8.04–8.12 (m, 4H, ArH), 7.90–7.94 (m, 2H, ArH), 7.82–7.87 (m, 2H, ArH), 7.49–7.63 (m, 3H, ArH), 7.25– 7.47 (m, 24H, ArH), 6.09 (dd, 1H, J = 10.1, 10.1 Hz, H-4'), 5.90 (dd, 1H, J = 10.1, 3.3 Hz, H-3'), 5.75 (dd, 1H, J = 3.3, 1.8 Hz, H-2'), 5.18 (d, 1H, J = 1.8 Hz, H-1'), 5.05 (d, 1H, J = 11.0 Hz, PhCH₂), 5.04 (d, 1H, J = 11.7 Hz, PhCH₂), 4.85 (d, 1H, J = 11.0 Hz, PhCH₂), 4.79 (d, 1H, J = 11.7 Hz, PhCH₂), 4.79 (d, 1H, J = 3.7 Hz, H-1), 4.72 (d, 1H, J = 11.7 Hz, PhCH₂), 4.69 (d, 1H, J = 11.7 Hz, PhCH₂), 4.65 (dd, 1H, J = 12.1, 2.4 Hz, H-6a'), 4.43 (ddd, 1H, J = 10.1, 4.4, 2.4 Hz, H-5'), 4.37 (dd, 1H, J = 12.1, 4.4 Hz, H-6b'), 4.07 (dd, 1H, J = 9.2, 9.2 Hz, H-3), 3.97 (dd, 1H, J = 11.0, 5.1 Hz, H-6a), 3.92 (ddd, 1H, J = 9.0, 5.1, 1.5 Hz, H-5), 3.83 (dd, 1H, J = 11.0, 1.5 Hz, H-6b), 3.73 (dt, 1H, J = 9.8, 7.0 Hz, octyl OCH₂), 3.59 (dd, 1H, J = 9.2, 3.7 Hz, H-2), 3.56 (dd, 1H, J = 9.2, 9.0 Hz, H-4),

3.47 (dt, 1H, J = 9.8, 6.6 Hz, octyl OCH₂), 1.64–1.76 (m, 2H, octyl OCH₂CH₂), 1.18–1.46 (m, 10H, octyl CH₂), 0.86 (t, 3H, J = 7.0 Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 166.1 (Ar), 165.5 (Ar), 165.3 (Ar), 165.2 (Ar), 138.9 (Ar), 138.4 (Ar), 138.3 (Ar), 133.4, 133.1, 133.0(2), 130.0(0), 129.8(5), 129.8(0), 129.7(5), 129.7(3), 129.4, 129.2, 129.1, 128.6, 128.4(8), 128.4(3), 128.4(1), 128.3(6), 128.2(7), 127.9(8), 127.9(2), 127.8, 127.7(7), 127.7(0), 127.5 (35C, Ar), 97.8 (C-1', ${}^{1}J_{C,H} = 174.6$ Hz), 96.5 (C-1), 82.1 (C-3), 80.5 (C-2), 77.9 (C-4), 75.6 (PhCH₂), 75.1 (PhCH₂), 73.1 (PhCH₂), 70.3, 70.0 (C-2', C-3'), 69.9 (C-5), 68.9 (C-5'), 68.3 (octyl OCH₂), 66.9 (C-4'), 66.7 (C-6), 62.7 (C-6'), 31.9 (octyl CH₂), 29.5(2) (octyl CH₂), 29.4(8) (octyl CH₂), 29.3 (octyl CH₂), 26.3 (octyl CH₂), 22.7 (octyl CH₂), 14.1 (octyl CH₃). HRMS (ESI) calcd. for (M + Na) C₆₉H₇₂O₁₅: 1163.4763. Found: 1163.4766.

Octyl 2-O-acetyl-3,4-O-isopropylidene-6-O-(*tert*-butyldiphenylsilyl)- α -D-

mannopyranosyl- $(1 \rightarrow 6)$ -2,3,4,-tri-O-benzyl- α -D-talopyranoside (39)

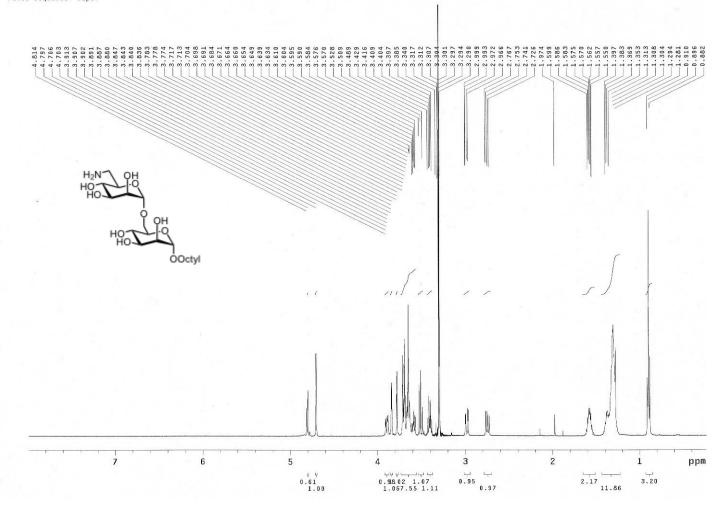
Thioglycoside **13** (39 mg, 0.065 mmol), alcohol **10**⁴ (33 mg, 0.057 mmol), and powdered 4 Å molecular sieves (75 mg) were dried overnight under vacuum with P₂O₅. Dry CH₂Cl₂ (3 mL) was added and the solution was cooled to 0 °C before the addition of *N*-iodosuccinimide (20 mg, 0.23 mmol) and TMSOTf (4 µL, 0.020 mmol). The mixture was stirred for 1 h at 0 °C and neutralized with triethylamine, before being filtered through Celite and concentrated. The crude product was purified by chromatography (6:1 hexane–EtOAc) to give **39** as a colorless oil (54 mg, 81%): *R*_f 0.22 (6:1 hexane–EtOAc); $[\alpha]_D = +33.6$ (*c* 0.8, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ_H 7.68–7.74 (m, 4H, ArH), 7.22–7.42 (m, 21H, ArH), 5.12 (d, 1H, *J* = 6.2, H-1'), 4.99 (dd, 1H, *J* = 6.2, 3.1 Hz, H-2'),

4.86 (d, 1H, J = 10.7 Hz, PhCH₂), 4.79 (d, 1H, J = 1.8 Hz, H-1), 4.72 (d, 1H, J = 12.4Hz, PhCH₂), 4.68 (d, 1H, J = 12.4 Hz, PhCH₂), 4.63 (s, 2H, PhCH₂), 4.58 (dd, 1H, J =7.6, 3.1 Hz, H-3'), 4.56 (d, 1H, J = 10.7 Hz, PhCH₂), 4.38 (dd, 1H, J = 7.6, 1.9 Hz, H-4'), 3.79–3.96 (m, 7H, H-5', H-6a', H6b', H-3, H-4, H6a, H-6b), 3.75 (dd, 1H, J = 3.1, 1.8 Hz, H-2), 3.70 (ddd, 1H, J = 9.6, 5.8, 1.5 Hz, H-5), 3.60 (dt, 1H, J = 9.7, 6.7 Hz, octyl OCH₂), 3.31 (dt, 1H, J = 9.7, 6.5 Hz, octyl OCH₂), 2.04 (s, 3H, C(O)CH₃), 1.42–1.53 (m, 5H, octyl CH₂, C(CH₃)₂), 1.21–1.34 (m, 13H, octyl CH₂, C(CH₃)₂), 1.06 (s, 9H, C(CH₃)₃), 0.89 (t, 3H, J = 7.2 Hz, octyl CH₃); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 170.4 (C=O), 138.7 (Ar), 138.5 (Ar), 135.7 (2C, Ar), 135.6 (2C, Ar), 133.5(3) (Ar), 133.4(6) (Ar), 129.5(9) (Ar), 129.5(8) (Ar), 128.3(3), 128.2(9), 128.0, 127.8, 127.6, 127.5(9), 127.5(5), 127.5(1), 127.4 (20C, Ar), 110.4 ($C(CH_3)_2$), 97.6(2) (C-1, ${}^{1}J_{C,H}$ = 167.0 Hz), 97.6(0) (C-1', ${}^{1}J_{C,H}$ = 175.8 Hz), 80.3 (C-3), 75.3 (C-2), 75.1(7) (C-4), 75.1(6) (PhCH₂), 73.9 (C-4'), 72.7 (PhCH₂), 72.2 (C-3'), 72.1 (PhCH₂), 71.7 (C-5), 70.8 (C-2'), 70.3 (C-5'), 67.4 (octyl OCH₂), 66.3 (C-6), 62.4 (C-6'), 31.8 (octyl CH₂), 29.4 (2C, octyl CH₂), 29.2 (octyl CH₂), 26.8 (C(CH₃)₃), 26.2 (octyl CH₂), 26.1 (C(CH₃)₂), 25.3 (C(CH₃)₂), 22.7 (octyl CH₂), 20.9 $(C(O)CH_3)$, 19.2 $(C(CH_3)_3)$, 14.1 $(octyl CH_3)$. HRMS (ESI) calcd. for (M + Na)C₆₂H₈₀O₁₂Si: 1067.5311. Found: 1067.5315.

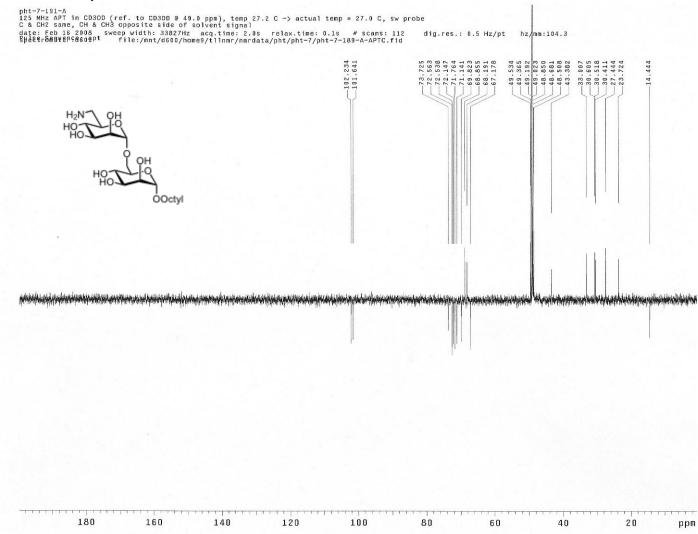
Octyl 2,3,4-tri-*O*-benzyl-6-*O*-(*tert*-butyldiphenylsilyl)- α -D-glucopyranosyl-(1 \rightarrow 6)-2-*O*-acetyl-3,4-*O*-isopropylidene- α -D-talopyranoside (40)

Thioglycoside **15** (143 mg, 0.18 mmol), alcohol **14** (53 mg, 0.14 mmol), and powdered 4 Å molecular sieves (150 mg) were dried overnight under vacuum with P_2O_5 . Dry CH_2CI_2 (5 mL) was added and the solution was cooled to 0 °C before the addition of *N*-

iodosuccinimide (50 mg, 0.21 mmol) and TMSOTf (8 µL, 0.042 mmol). The mixture was stirred for 1 h at 0 °C and neutralized with triethylamine, before being filtered through Celite and concentrated. The crude product was purified by chromatography (4:1 hexane–EtOAc) to give the α glycoside (97 mg, 66%, R_f 0.31, 4:1 hexane–EtOAc) and β -glycoside (32 mg, 22%, R_f 0.38, 4:1 hexane–EtOAc) isomers, both as a colorless oils. Only the α isomer **40** was fully characterized. [α]_D = +40.1 (c 1.8, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃) δ_H 7.65–7.73 (m, 4H, ArH), 7.24–7.44 (m, 19H, ArH), 7.16–7.19 (m, 2H, ArH), 4.96 (d, 1H, J = 10.8 Hz, PhCH₂), 4.90–3.94 (m, 3H, PhCH₂, H-1', H-2), 4.84 (d, 1H, J = 6.4 Hz, H-1), 4.81 (d, 1H, J = 10.8 Hz, PhCH₂), 4.78 (d, 1H, J = 11.9 Hz, PhCH₂), 4.74 (d, 1H, J = 11.9 Hz, PhCH₂), 4.66 (d, 1H, J = 11.1 Hz, PhCH₂), 4.57 (dd, 1H, J = 7.6, 2.8 Hz, H-3), 4.39 (dd, 1H, J = 7.6, 1.7 Hz, H-4), 4.01 (dd, 1H, J = 9.4, 9.4) Hz, H-3'), 3.90-3.98 (m, 2H, H-6a', H-5), 3.87 (dd, 1H, J = 11.3, 1.6 Hz, H-6b'), 3.78-3.83 (m, 1H, H-5'), 3.69–3.78 (m, 3H, H-4', H-6a, octyl OCH₂), 3.61 (dd, 1H, J = 10.0, 6.5 Hz, H-6b), 3.57 (dd, 1H, J = 9.4, 3.6 Hz, H-2'), 3.35 (dt, 1H, J = 9.8, 6.6 Hz, octyl OCH₂), 2.15 (s, 3H, C(O)CH₃), 1.42–1.52 (m, 5H, octvl CH₂, C(CH₃)₂), 1.31 (s, 3H, $C(CH_3)_2$, 1.15–1.30 (m, 10H, octyl CH₂), 1.06 (s, 9H, *t*-Bu), 0.85 (t, 3H, J = 7.0 Hz, octyl CH_3); ¹³C NMR (125 MHz, CDCl₃) δ_C 170.2 (C=O), 138.8 (Ar), 138.6 (Ar), 138.5 (Ar), 135.8 (2C, Ar), 135.6 (2C, Ar), 133.7 (Ar), 133.3 (Ar), 129.5(5), 129.5(1), 128.4, 128.3, 128.1, 127.7, 127.6(3), 127.6(0), 127.5, 127.4 (21C, Ar), 110.6 (C(CH₃)₂), 97.4 (C-1, $^{1}J_{C,H}$ = 172.3 Hz), 96.9 (C-1'), 82.2 (C-3'), 80.4 (C-2'), 77.7 (C-4'), 75.9 (PhCH₂), 74.9 (PhCH₂), 74.2 (C-4), 75.2 (C-4), 72.8 (PhCH₂), 72.4 (C-3), 71.5 (C-5'), 71.0 (C-2), 68.5 (C-5), 68.0 (octyl OCH₂), 65.7 (C-6), 62.8 (C-6'), 31.8 (octyl CH₂), 29.5 (octyl CH₂), 29.4 (octyl CH₂), 29.3 (octyl CH₂), 26.8 (C(CH₃)₃), 26.2 (C(CH₃)₂), 26.0 (octyl CH₂), 25.5

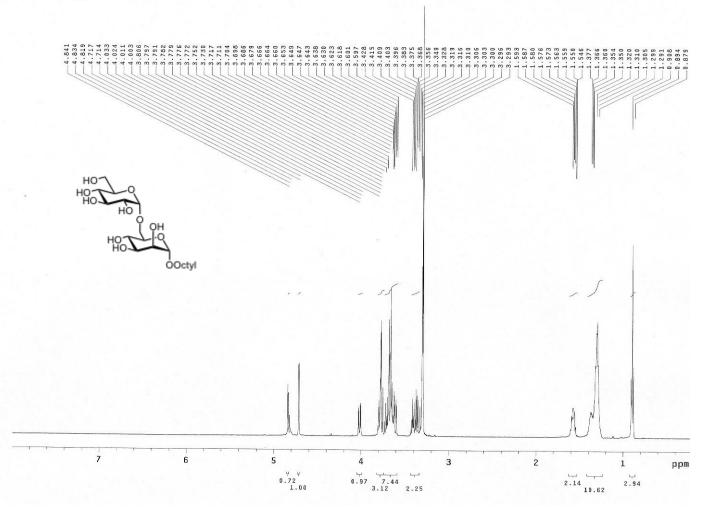

 $(C(CH_3)_2)$, 22.6 (octyl CH₂), 21.1 (C(O)CH₃), 19.3 (C(CH₃)₃), 14.1 (octyl CH₃). HRMS (ESI) calcd. for (M + Na) C₆₂H₈₀O₁₂Si: 1067.5311. Found: 1067.5312.

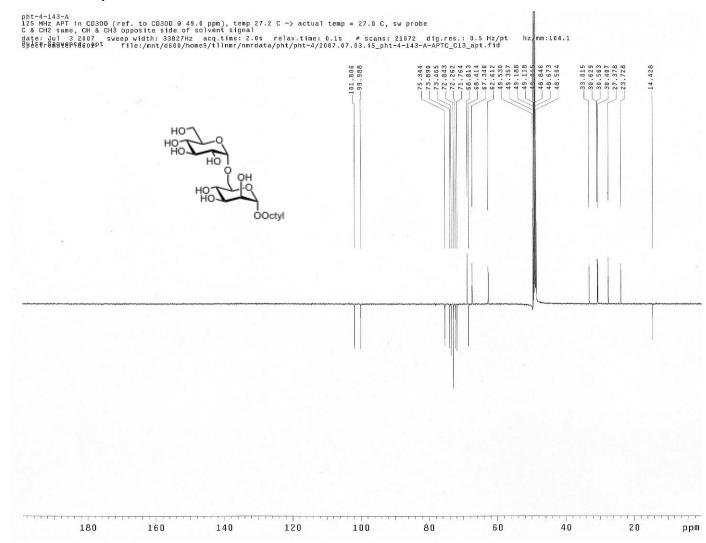
References

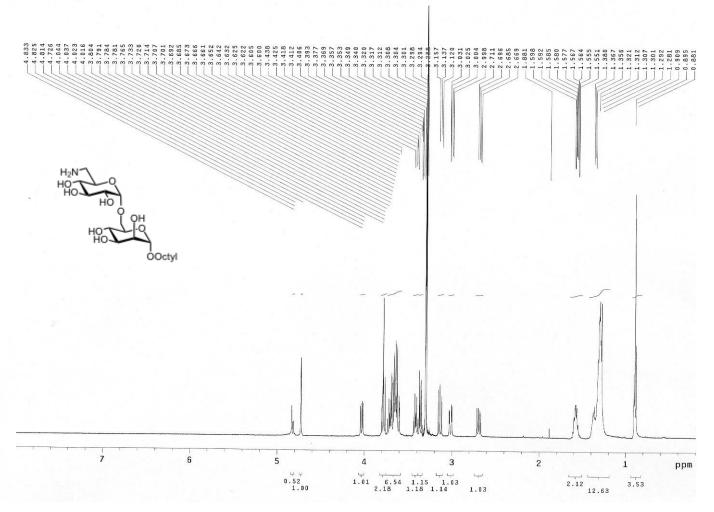

- 1. J. Broddefalk, K.-E. Bergquist and J. Kihlberg, *Tetrahedron*, 1998, **54**, 12047– 12070.
- 2. J. Ohlsson and G. Magnusson, *Carbohydr. Res.*, 2000, **329**, 49-55.
- 3. A. Watts and S. J. Williams, *Org. Biomol. Chem.*, 2005, 1982–1992.
- V. Subramaniam, S. S. Gurcha, G. S. Besra and T. L. Lowary, *Biorg. Med. Chem.*, 2005, **13**, 1083–1094.
- 5. P. H. Tam and T. L. Lowary, *Carbohydr. Res.*, 2007, **342**, 1741–1772.
- C. Wing, J. C. Errey, B. Mukhopadhyay, J. S. Blanchard and R. A. Field, Org. Biomol. Chem., 2006, 4, 3945–3950.

¹H NMR spectrum of **2**

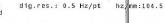
pht-7-191-A 500 MHz 1D in CD30D (ref. to CD30D @ 3.30 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul

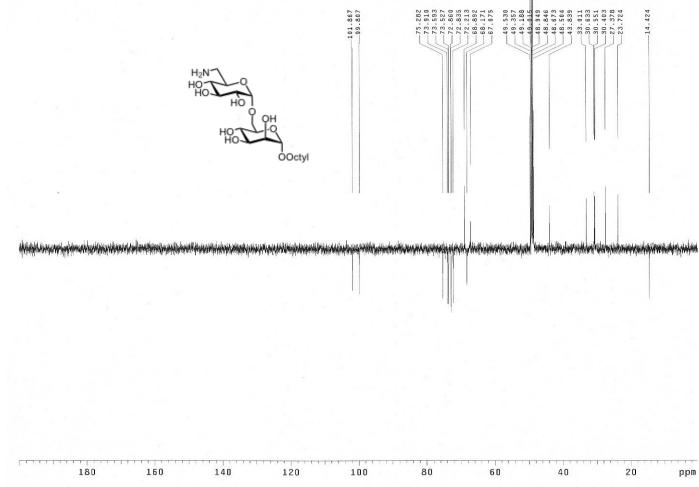



¹³C NMR spectrum of **2**

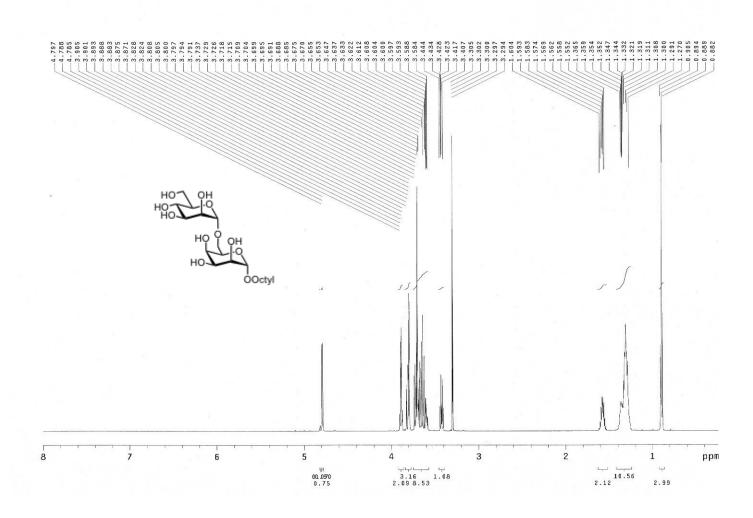

¹H NMR spectrum of **3**

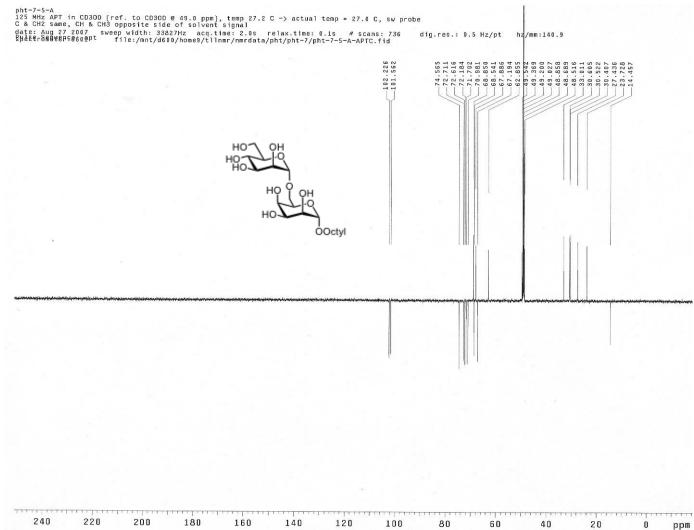
pht-4-143-A 500 MHz 1D in CD3OD (ref. to CD3OD @ 3.30 ppm), temp 27.2 C → actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul

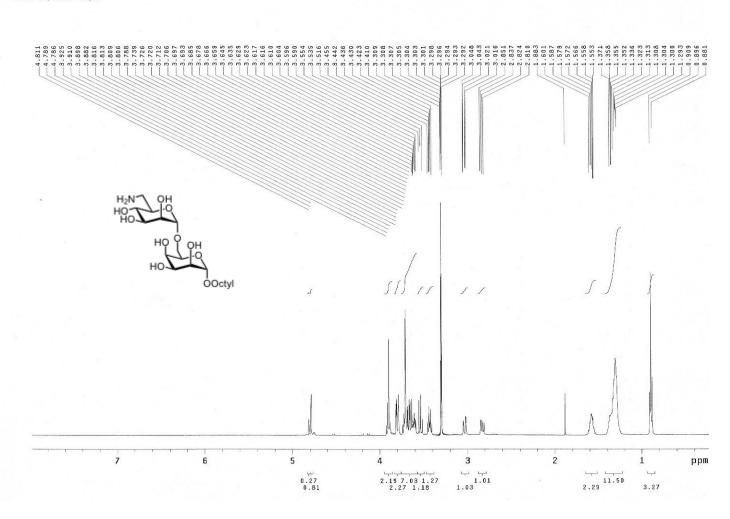


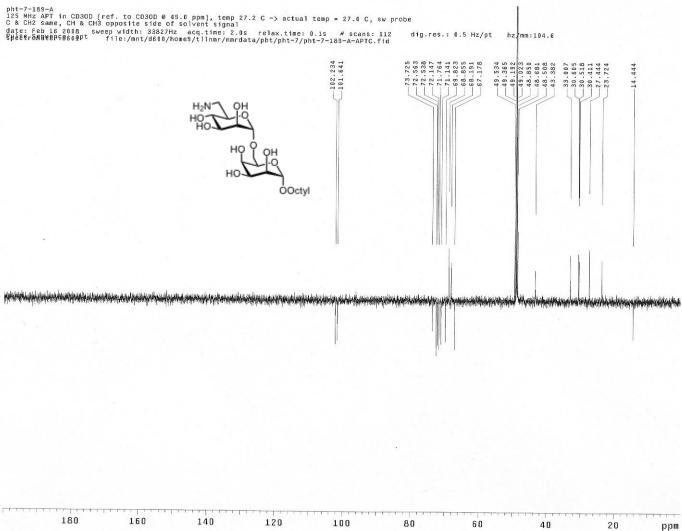


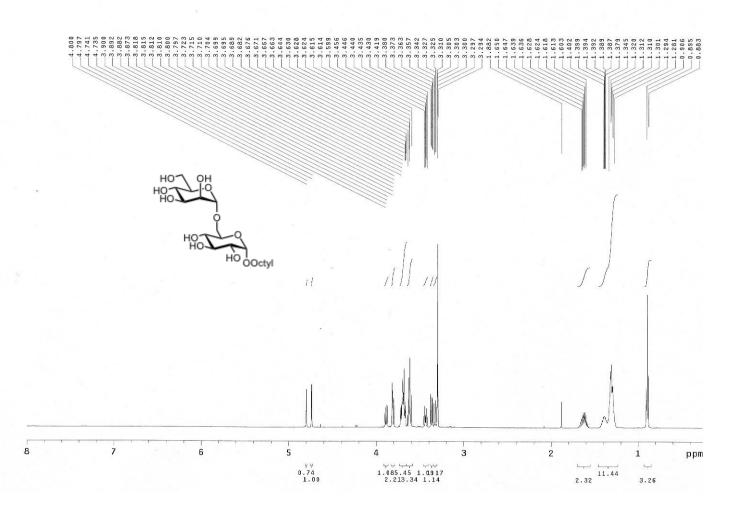
pht-7-185-A1 500 MHz 1D in CD30D (ref. to CD30D 0 3.30 ppm), temp 27.2 C → actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul

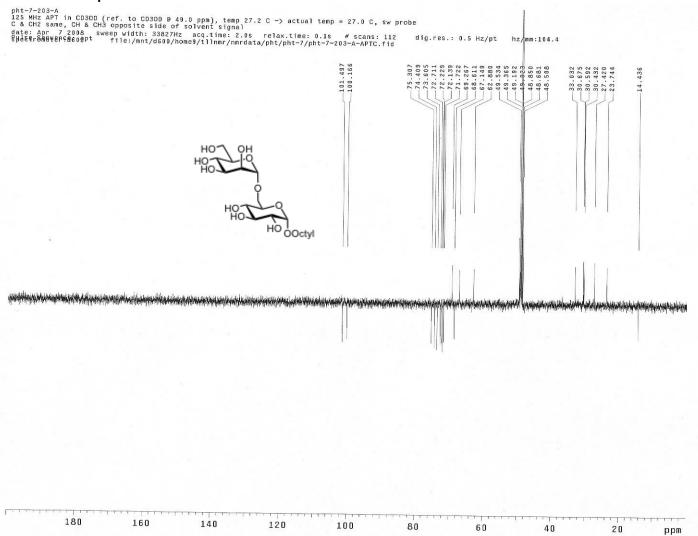


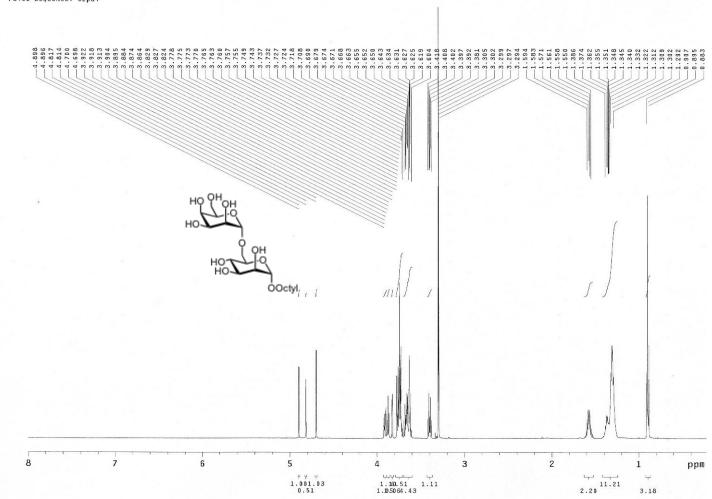

pht-7-185-A 125 MHZ APT in CD30D (ref. to CD30D @ 49.0 ppm), temp 27.2 C -> actual temp = 27.0 C, sw probe C & CHZ same, CH & CH3 opposite side of solvent signal date: Feb 16 2008 sweep width: 33827Hz acq.time: 2.0s relax.time: 0.1s *#* scans: 520 d Bjde&F&MGV@F&860&Pt file:/mnt/d600/home9/tllnmr/nmrdata/pht/pht-7/pht-7-185-A2-APTC.fid

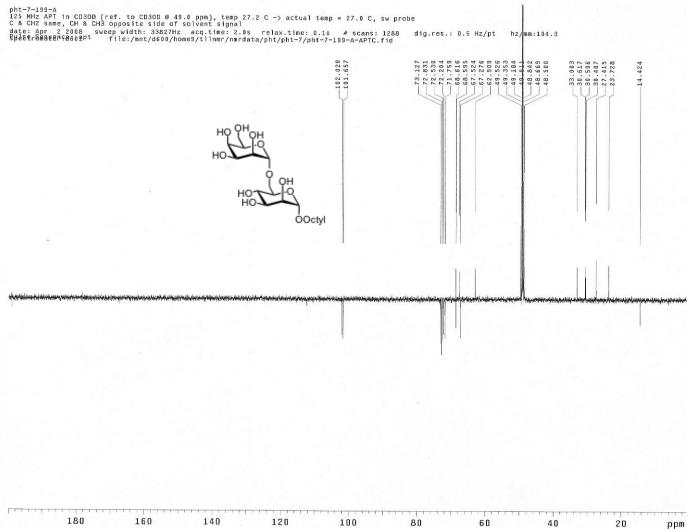


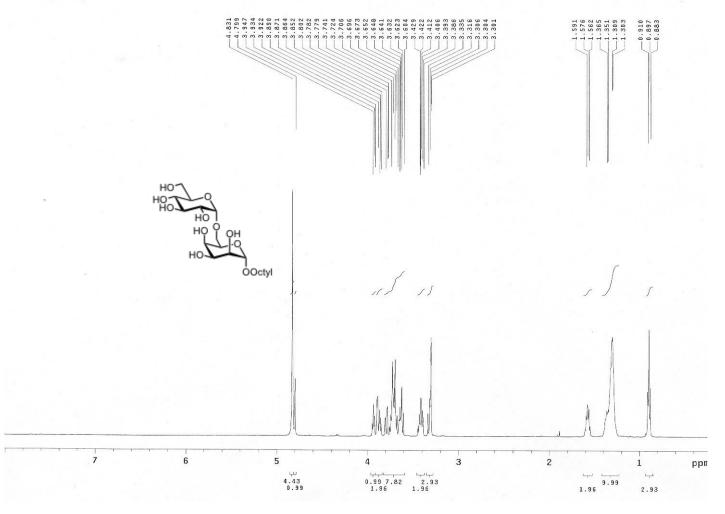

pht-7-5-A 600 MHz 1D in CD3OD (ref. to CD3OD @ 3.30 ppm), temp 28.0 C -> actual temp = 27.0 C, id600 probe Pulse Sequence: s2pul

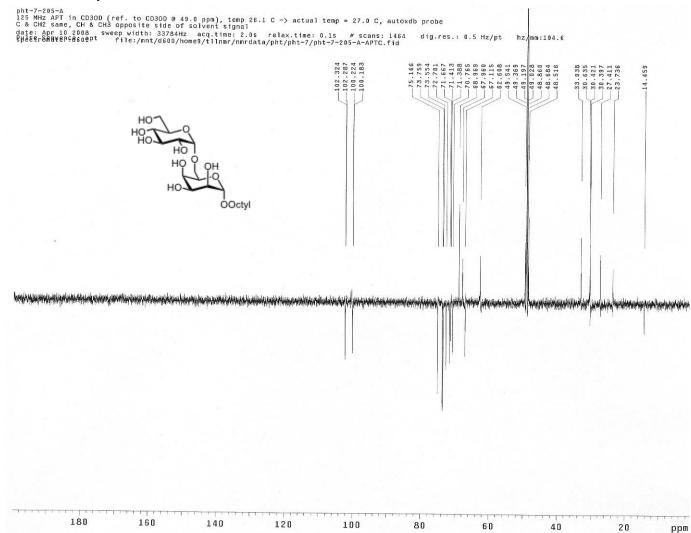

pht-7-189-A 500 MHz 1D in CD30D (ref. to CD30D @ 3.30 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul

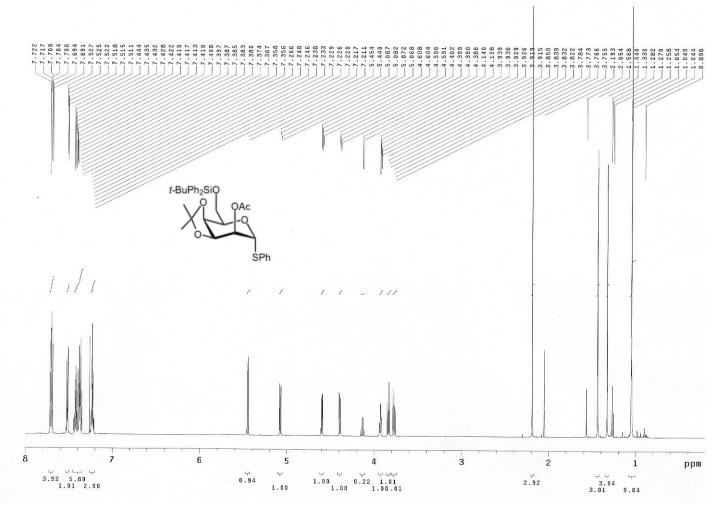



pht-7-203-A 600 MHz 1D in CD30D (ref. to CD30D @ 3.30 ppm), temp 28.0 C -> actual temp = 27.0 C, id600 probe

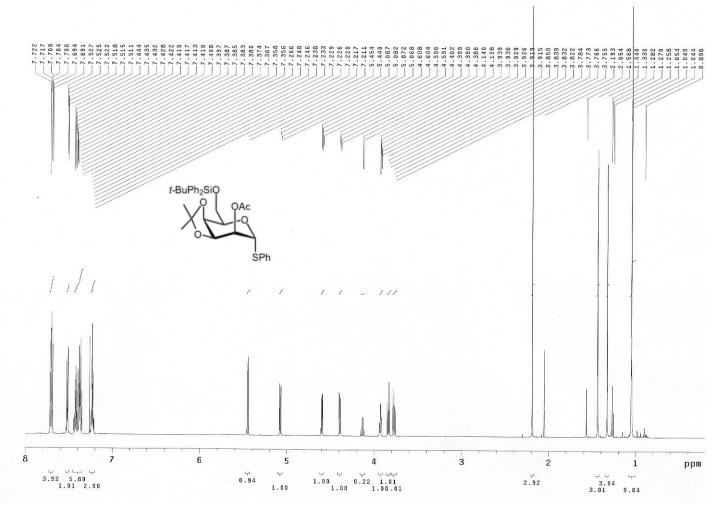

Pulse Sequence: s2pul

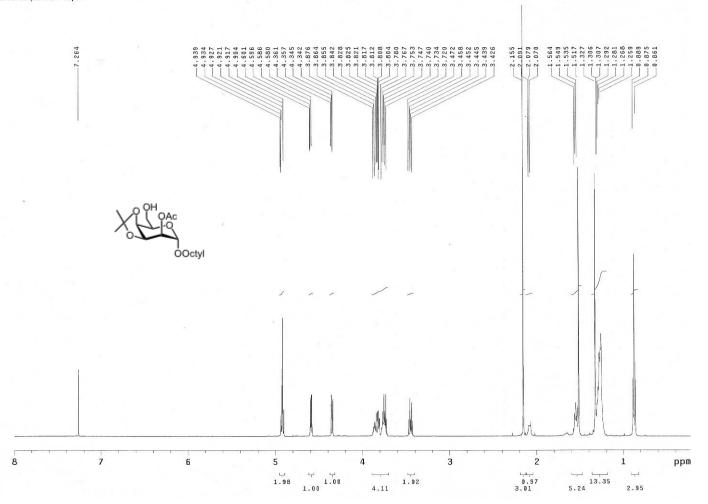


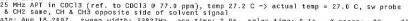

pht-7-199-A 600 MHz 1D in CD30D (ref. to CD30D @ 3.30 ppm), temp 28.0 C → actual temp = 27.0 C, id600 probe Pulse Sequence: s2pul

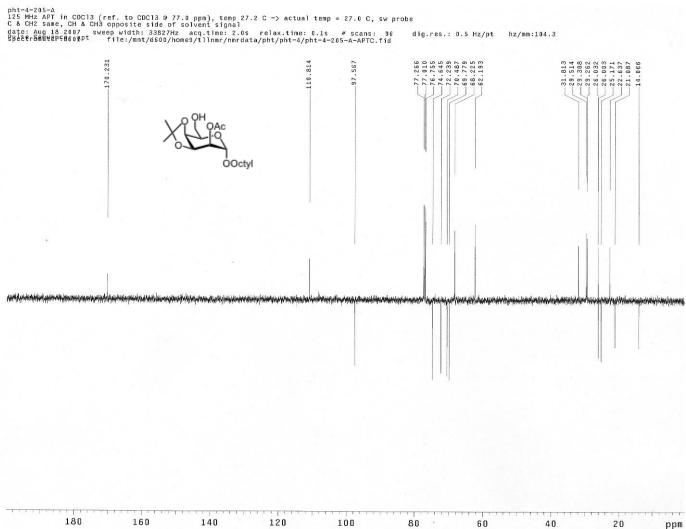


pht-7-205-A 500 MHz 1D in CD30D (ref. to CD30D 0 3.30 ppm), temp 26.1 C -> actual temp = 27.0 C, autoxdb probe Pulse Sequence: presat

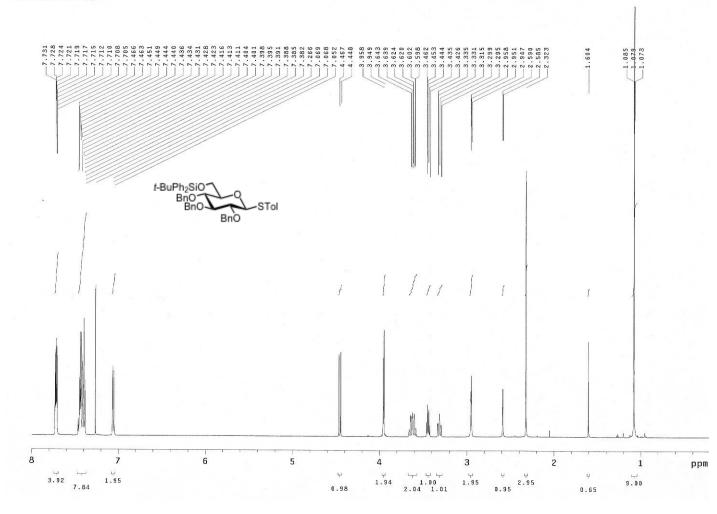


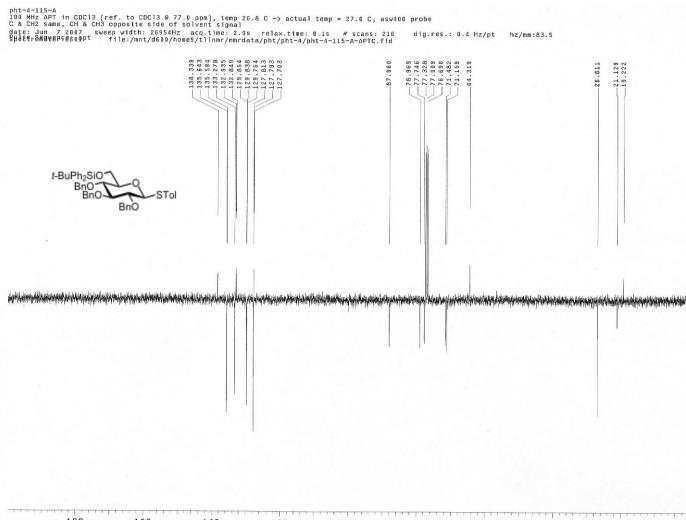

pht-4-183-A 600 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 28.0 C → actual temp = 27.0 C, id600 probe Pulse Sequence: s2pul



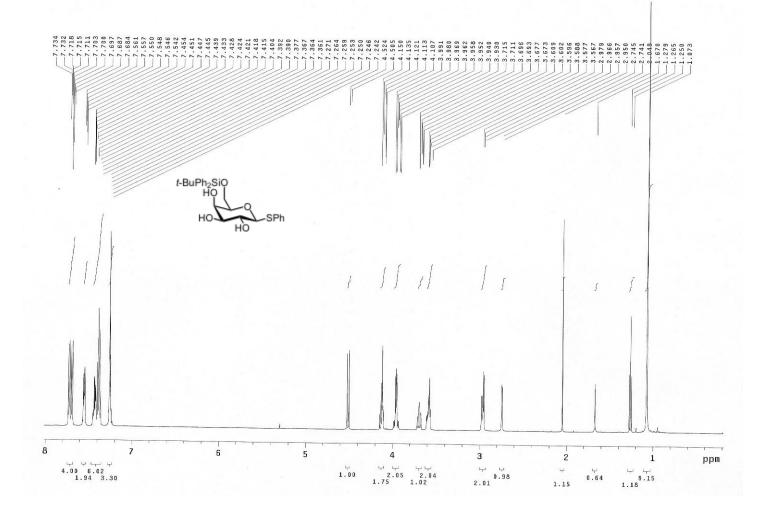

pht-4-183-A 600 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 28.0 C → actual temp = 27.0 C, id600 probe Pulse Sequence: s2pul

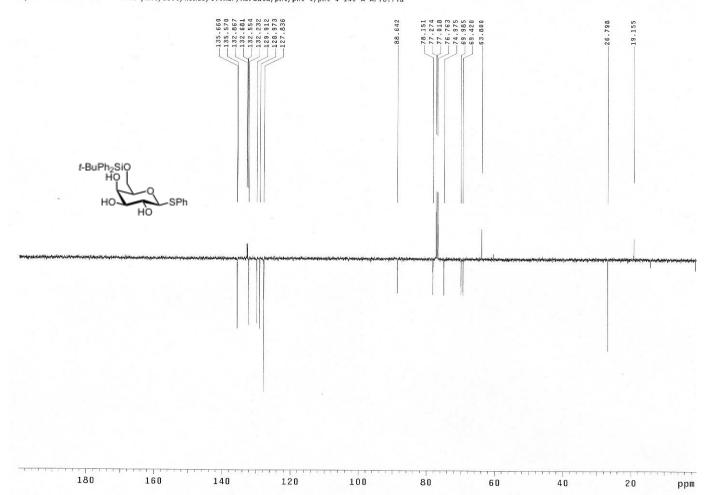
pht-4-205-A 500 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul



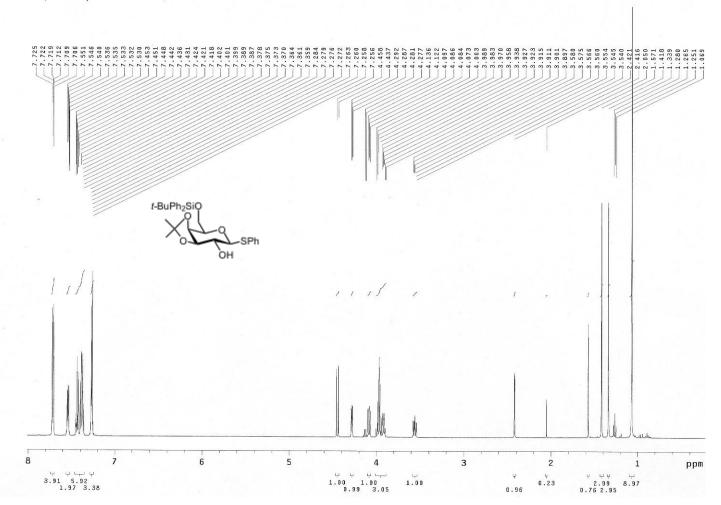


80 '

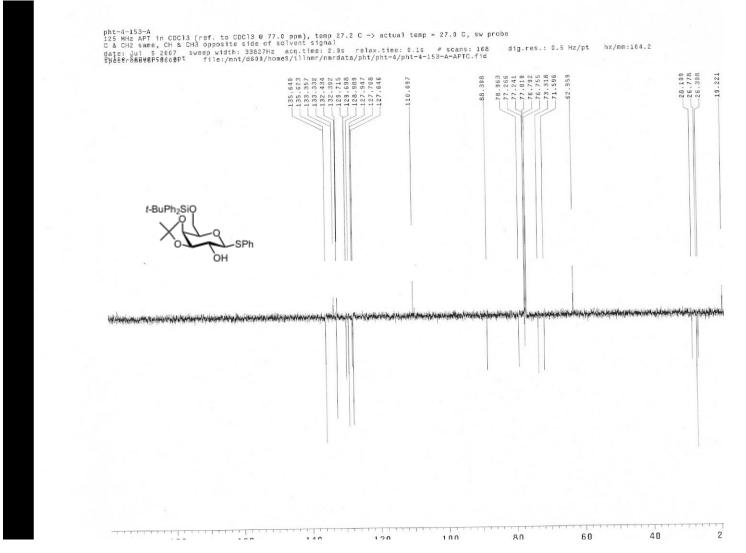

pht-4-115-A 500 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.2 C → actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul

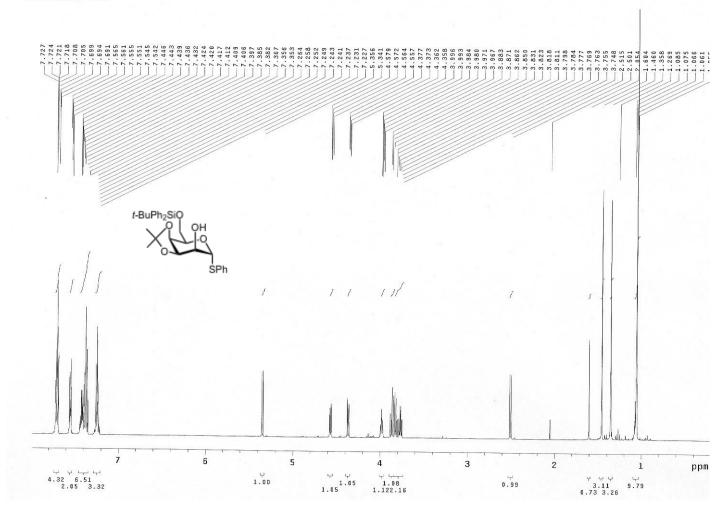

180 160 140 120 100 80 60 40 20 ppm

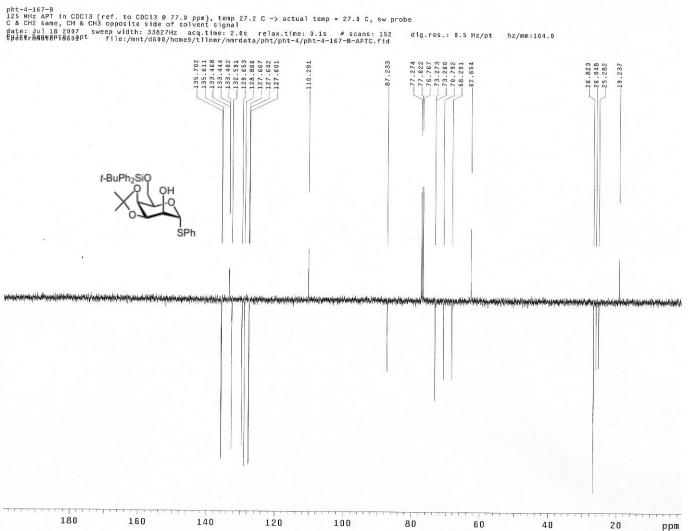
pht-4-149-A 500 MHz 1D in CDCl3 (ref. to CDCl3 0 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul



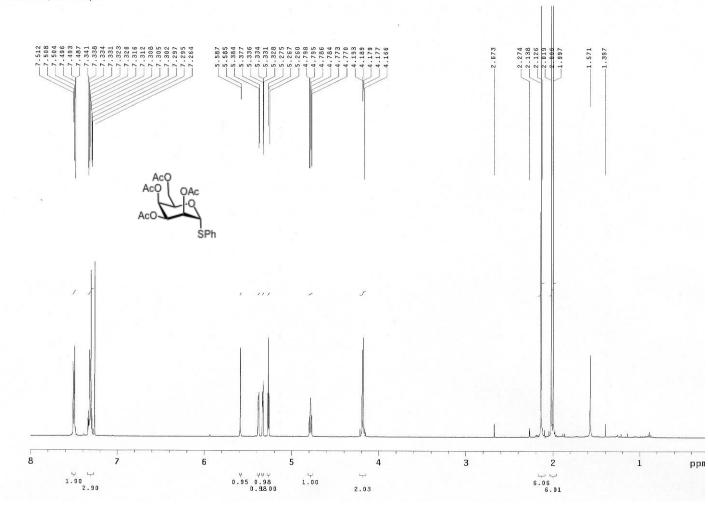
pht-4-149-A 125 MHz APT in CDCl3 (ref. to CDCl3 @ 77.0 ppm), temp 27.2 C -> actual temp = 27.0 C, sw probe C & CH2 same, CH & CH3 opposite side of solvent signal date: Jul 4 2007 sweep width: 33827Hz acq.time: 2.0s relax.time: 0.1s % scans: 216 d 8悂érômSweps@60&pt file:/mnt/d600/home9/tllnmr/nmrdata/pht/pht-4/pht-4-149-A-APTC.fid


dig.res.: 0.5 Hz/pt hz/mm:104.3

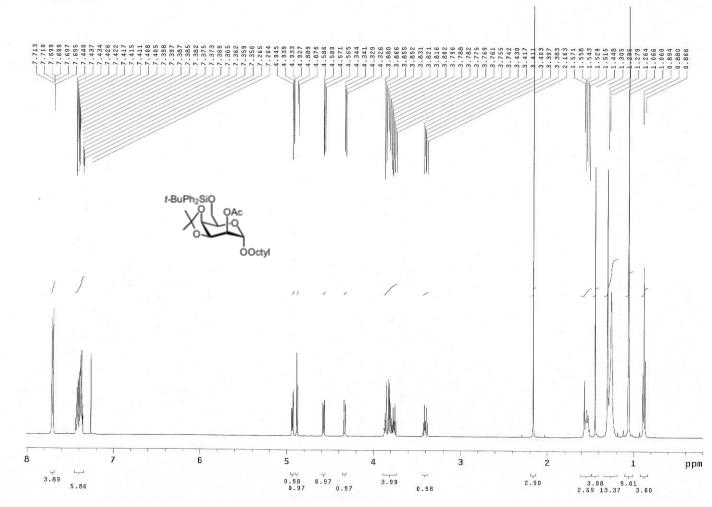

pht-4-153-A 500 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul

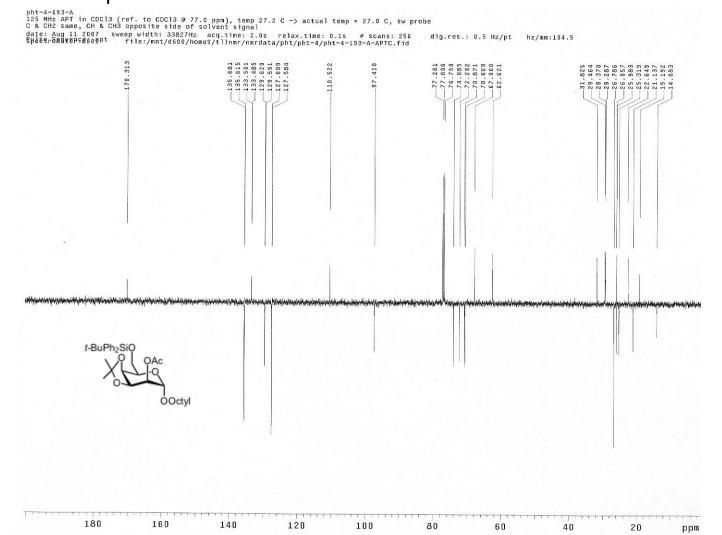


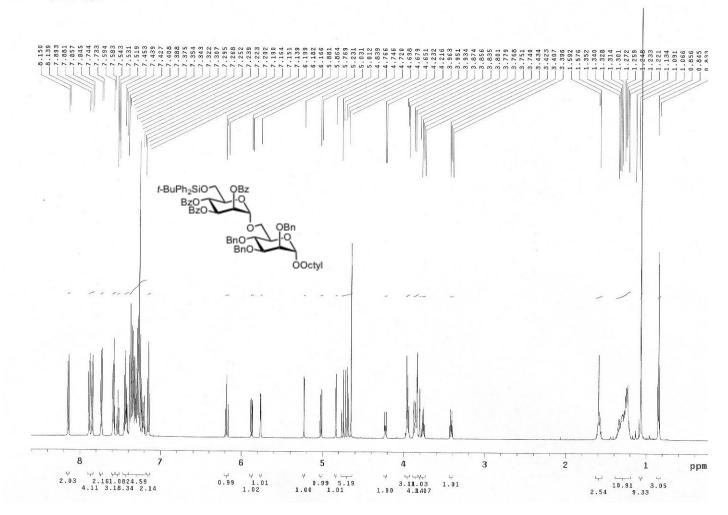
$\frac{13}{C}$ NMR spectrum of **19**



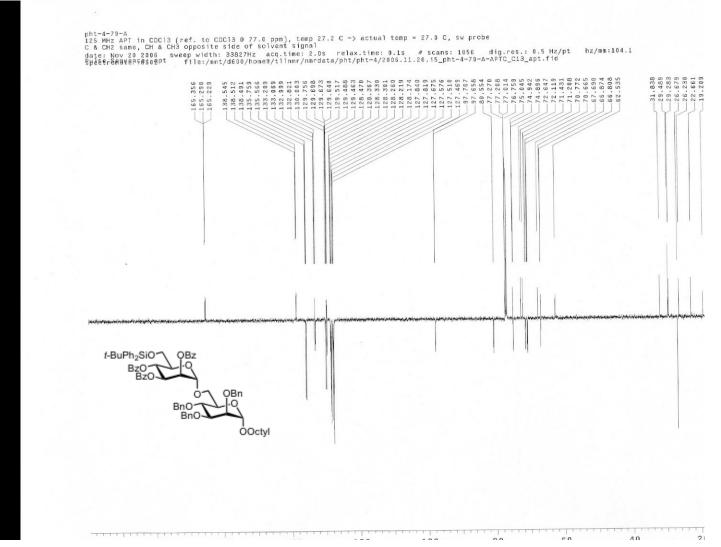
pht−4−167−B 500 MHz 1D in CDCl3 (ref. to CDCl3 0 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul

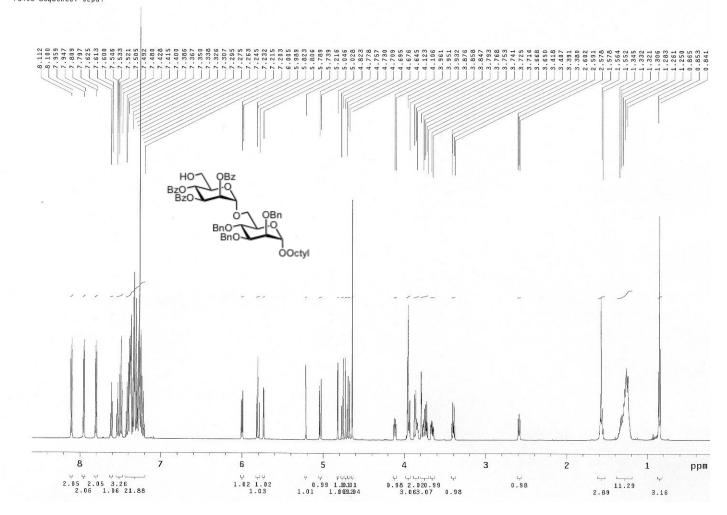


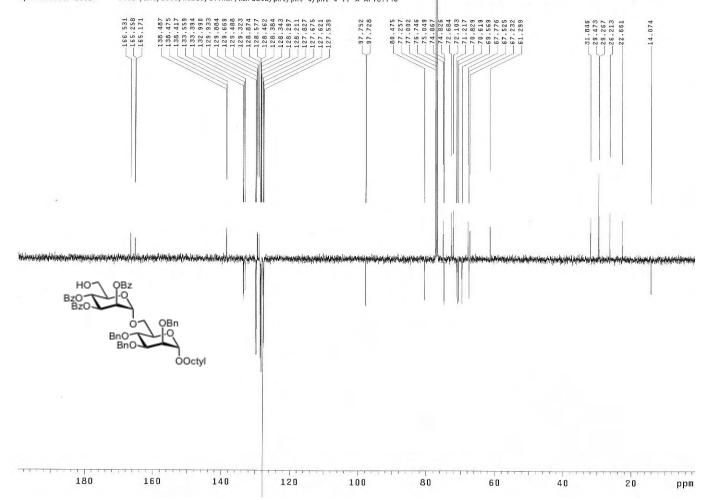

pht-4-171-B 500 MHz 1D in CDCl3 (ref. to CDCl3 0 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul

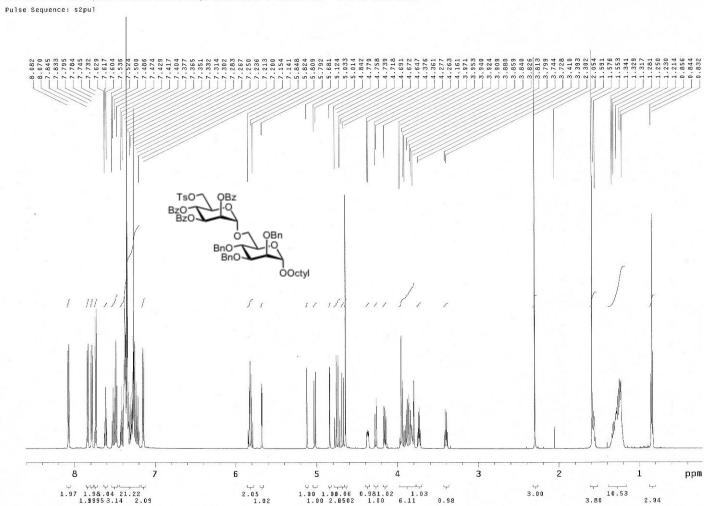

pht-4-171-A 500 MHz 1D in CDCl3 (ref. to CDCl3 0 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul 641 638 638 638 638 638 638 628 628 628 613 613 613 606 55 55 42 30 30 45 45 1111 t-BuPh₂SiO AcO OAc AcC ŚPh JI JI 1 7 6 5 4 3 2 1 ppm ب بے ب 3.94 2.86 7.97 بب بب 0.971.00 1.000.99 ц 2.01 ب ب 5.94 2.99 9.34 Ψ 1.00 2.26

pht-4-193-A 500 MHz 1D in CDCl3 (ref. to CDCl3 0 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul



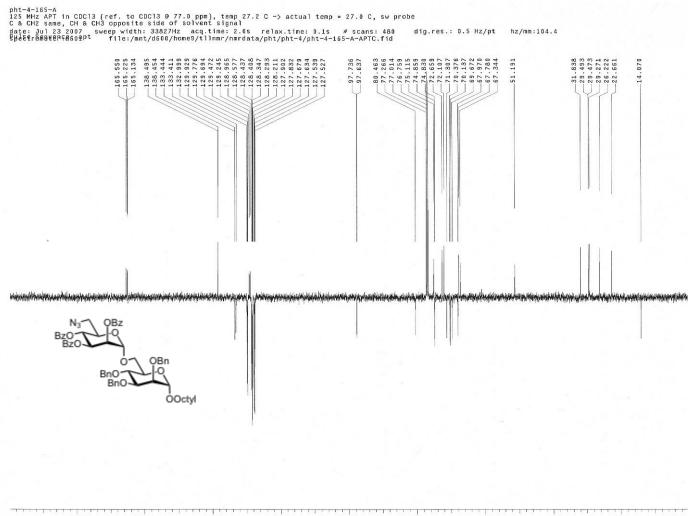

pht-4-79-A 600 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 28.0 C → actual temp = 27.0 C, id600 probe Pulse Sequence: s2pul


$\frac{^{13}C}{^{13}C}$ NMR spectrum of **26**



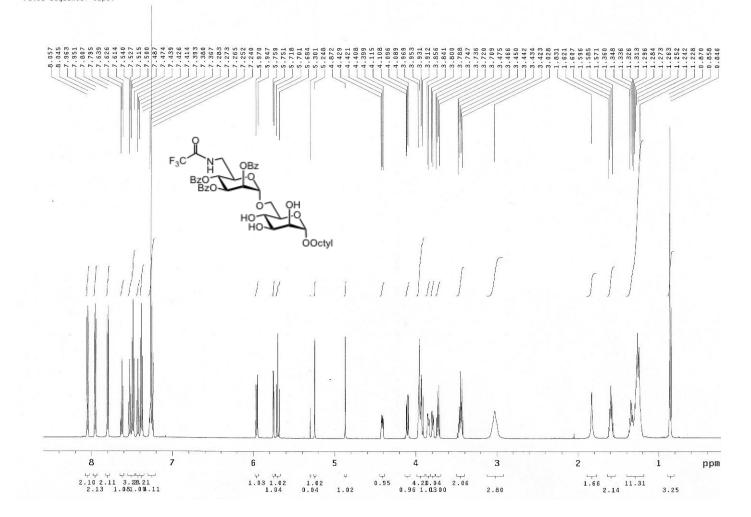
pht-4-77-A 600 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 28.0 C → actual temp = 27.0 C, id600 probe Pulse Sequence: s2pul

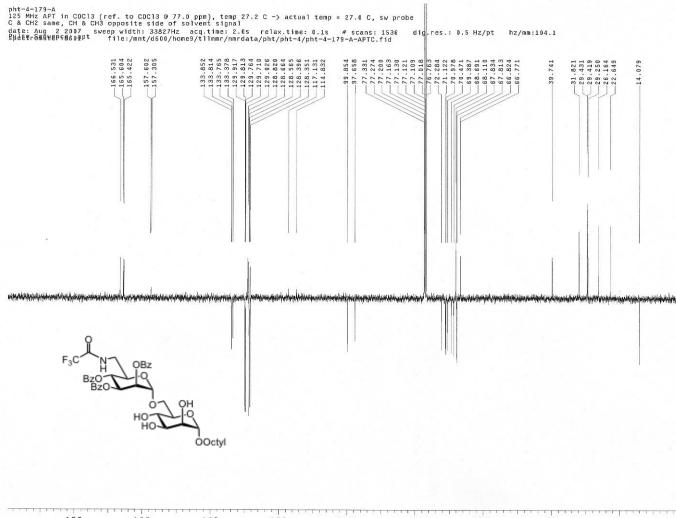
pht-4-77-A 125 MHz APT in CDC13 (ref. to CDC13 0 77.0 ppm), temp 27.2 C -> actual temp = 27.0 C, sw probe C & CH2 same, CH & CH3 opposite side of solvent signal date: Nov 14 2006 sweep width: 33827Hz acq.time: 2.0s relax.time: 0.1s # scans: 1408 dig gHé&&r&MHYER860&Pt file:/mnt/d600/home9/tllnmr/nmrdata/pht/pht-4/pht-4-77-A-APTC.fid



pht-4-161-A 600 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 28.0 C -> actual temp = 27.0 C, id600 probe

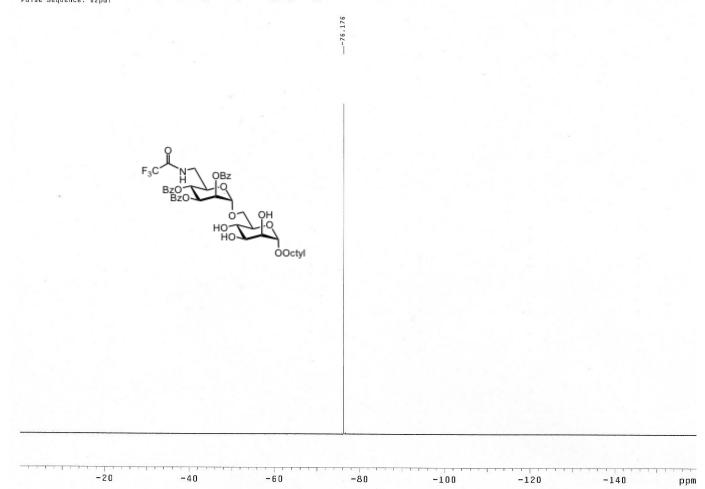
pht-4-161-A 125 MHz APT in CDC13 (ref. to CDC13 0 77.0 ppm), temp 27.2 C -> actual temp = 27.0 C, sw probe C & CH2 same, CH & CH3 opposite side of solvent signal date: Jul 17 2007 sweep width: 33827Hz acq.time: 2.0s relax.time: 0.1s # scans: 1368 dig.res.: 0.5 Hz/pt hz/mm:104.0 8µd&%r&RHWEP\$860&pt file:/mnt/d600/home9/tllnmr/nmrdata/pht/pht-4/pht-4-161-A-APTC.fid 711 02 03 03 26 655 90 843 843 85 98 98 165 فالا المحاجزة المرجوني فللفحاط ومعطوا يتبا المطلولان والمطالبة والمحص وغاري TsO OB₂ BzO⁻ QBn BnO BnO ÓOctyl 100 21 . . . 100 on EП 10

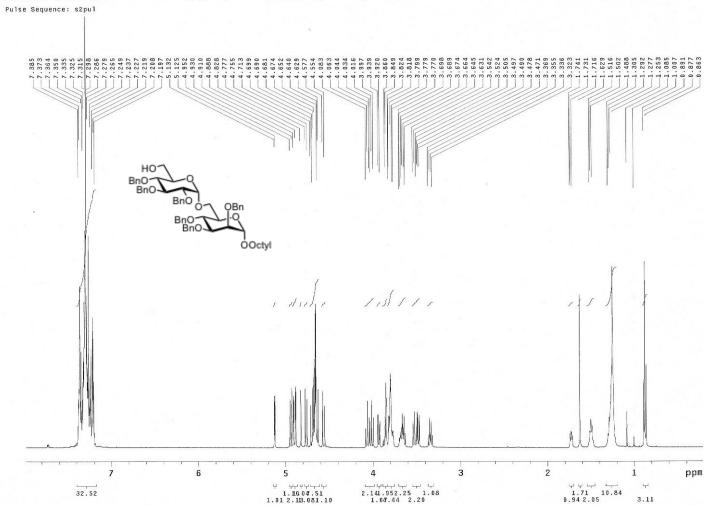

pht-4-165-A 500 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul



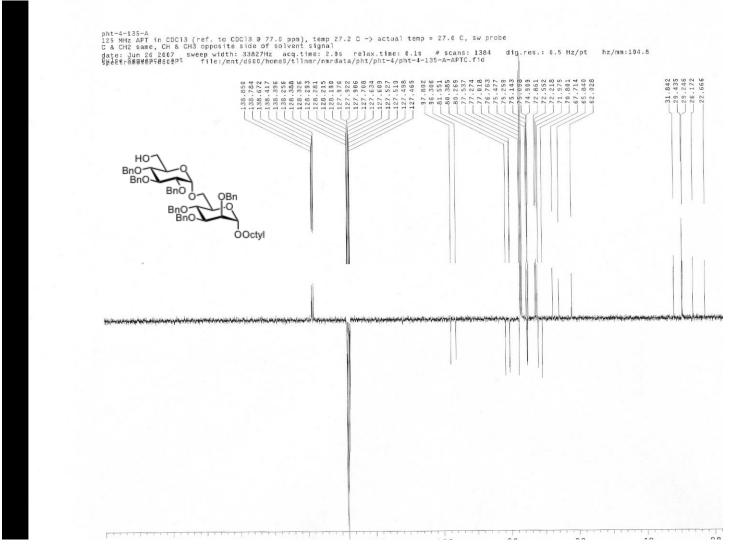
180 160 140 120 100 80 60 40 20 ppm

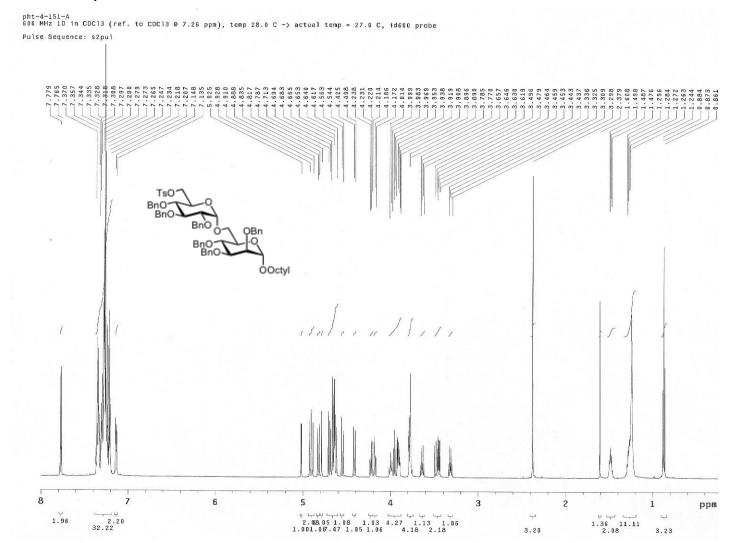
pht-4-179-A 600 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 28.0 C -> actual temp = 27.0 C, id600 probe Pulse Sequence: s2pul

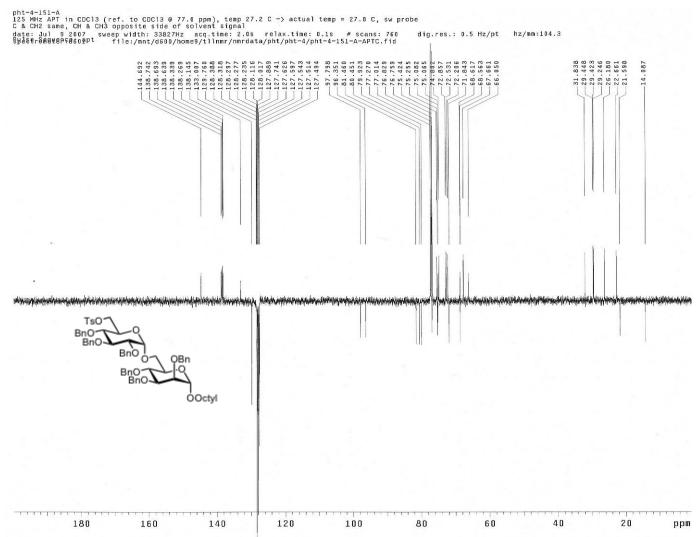


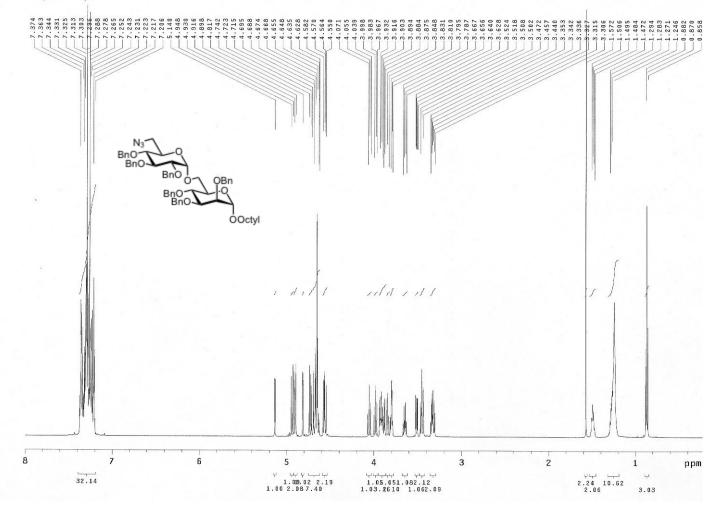

180 160 140 120 100 80 60 40 20 ppm

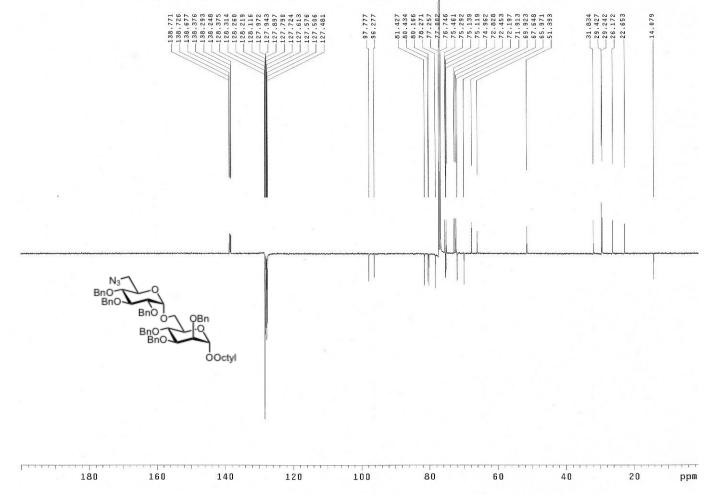
pht-4-179-A 376.132 MHz F19 1D in

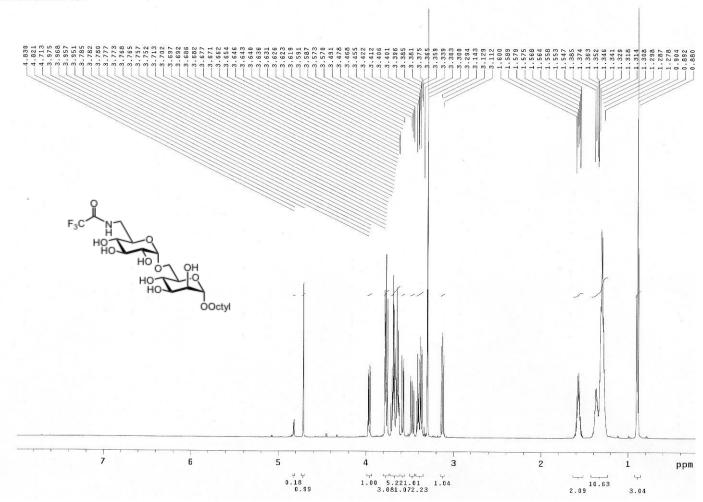

dቬ፥ዸዩ፡አቤៀt⁻⁴ታ28፥ፖ^{A-1}\$Æep width: 78818Hz acq.time: 3.0s relax.time: 1.0s # scans: 20 spectrometer:d601 file:/mnt/d600/home9/tllnmr/nmrdata/pht/pht-4/pht-4-181-A-19F.fid Pulse Sequence: s2pul


dig.res.: 0.3 Hz/pt hz/mm:250.9

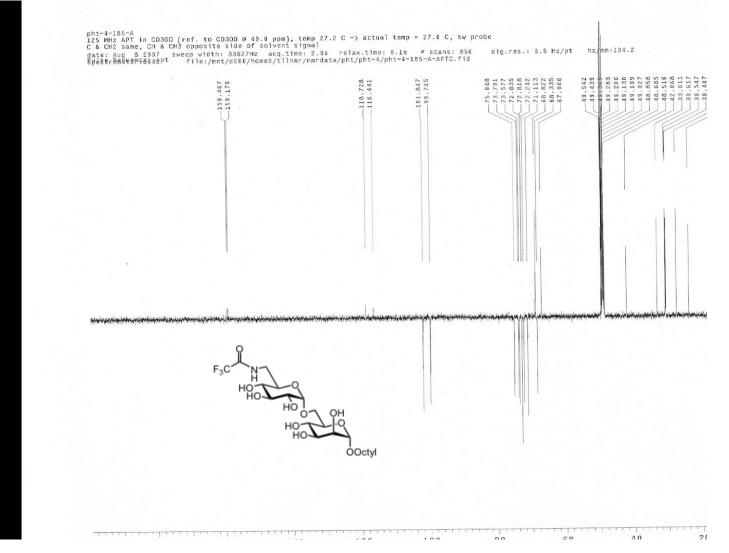



pht-4-135-A 500 MHz 1D in CDCl3 (ref. to CDCl3 0 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe

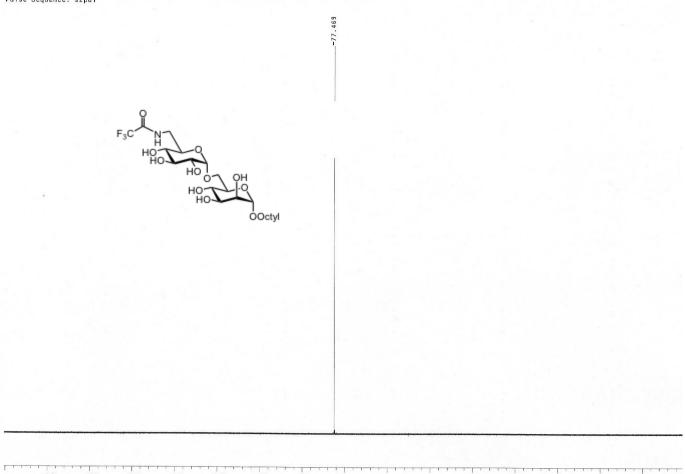




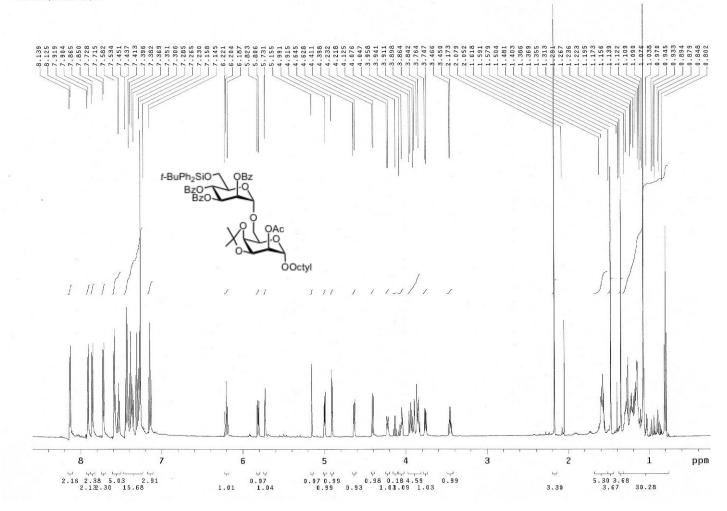
pht-4-155-A 600 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 28.0 C -> actual temp = 27.0 C, id600 probe Pulse Sequence: s2pul



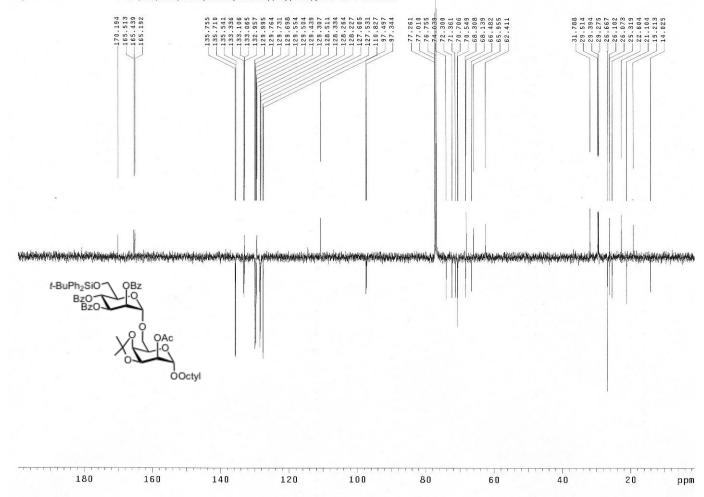
pht-4-185-A 600 MHz 1D in CD30D (ref. to CD30D @ 3.30 ppm), temp 28.0 C → actual temp = 27.0 C, id600 probe Pulse Sequence: s2pul



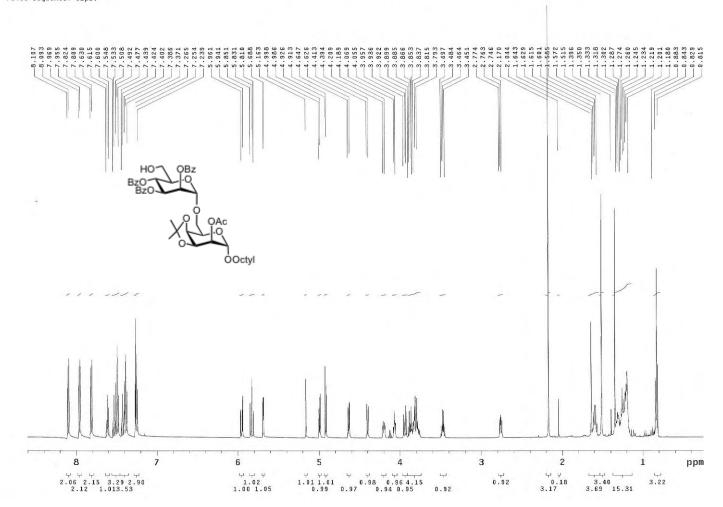
$\frac{^{13}C}{^{13}C}$ NMR spectrum of **34**

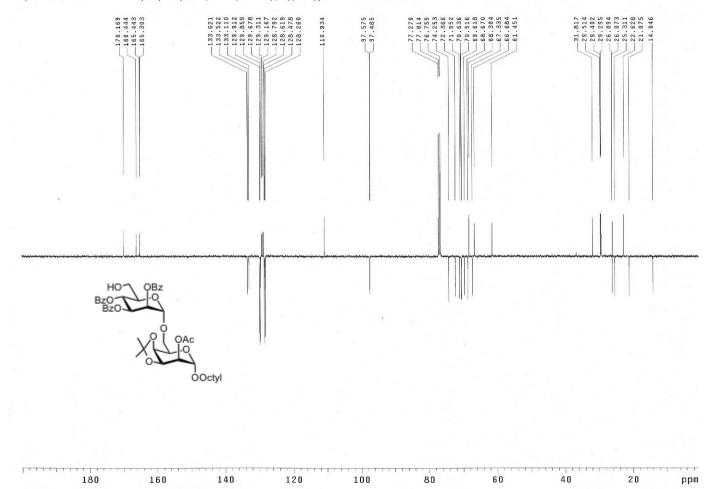

pht-4-185-A 376.132 MHz F19 1D in

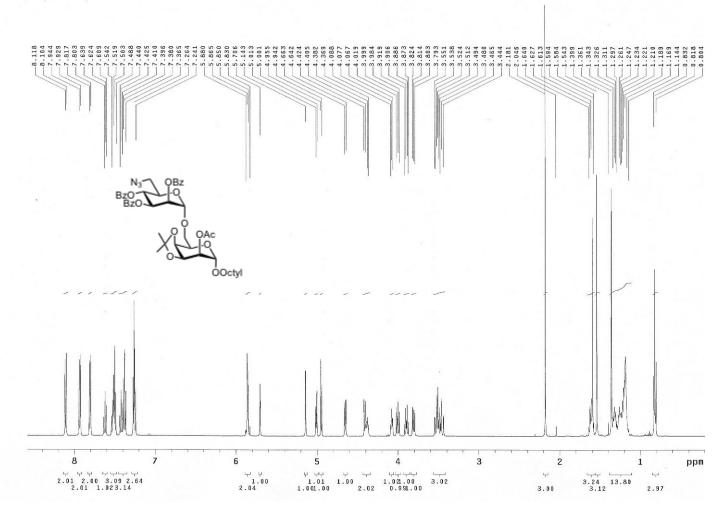
dĒidē:Auḫt-4-2667A-F3We@tjrWeidth: 78818Hz acq.time: 3.0s relax.time: 1.0s # scans: 20 dig.res.: 0.3 Hz/pt hz/mm:250.6 spectrometer:d601 file:/mnt/d600/home9/tllnmr/nmrdata/pht/pht-4/pht-4-185-A-Fluorine.fid Pulse Sequence: s2pul

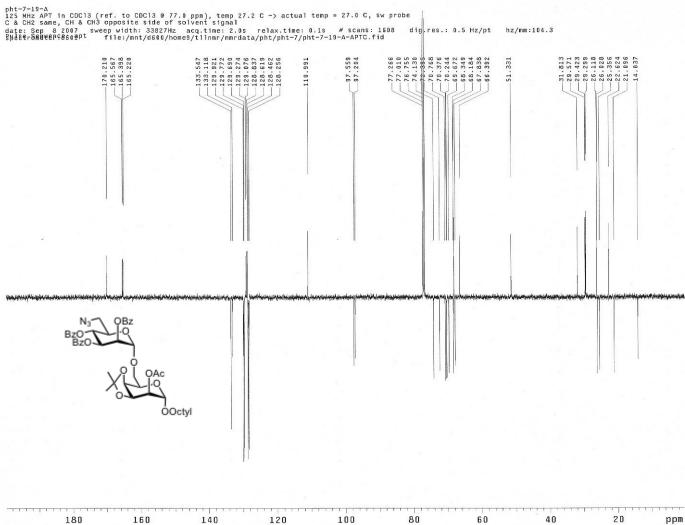


-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 ppm

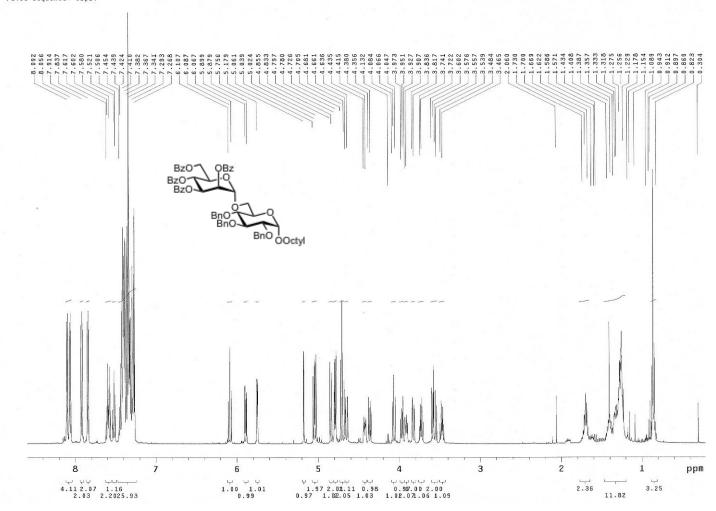

pht-7-11-A 600 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 28.0 C -> actual temp = 27.0 C, id600 probe Pulse Sequence: s2pul


pht-7-11-A 125 MHZ APT in CDCl3 (ref. to CDCl3 @ 77.0 ppm), temp 27.2 C -> actual temp = 27.0 C, sw probe C & CHZ same, CH & CH3 opposite side of solvent signal date: Aug 27 2007 sweep width: 33827Hz acq.time: 2.0s relax.time: 0.1s # scans: 504 d gµde&r&M&VEF&60&Pt file:/mnt/d600/home9/tllnmr/nmrdata/pht/pht-7/pht-7-11-A-APTC.fid dig.res.: 0.5 Hz/pt hz/mm:104.0

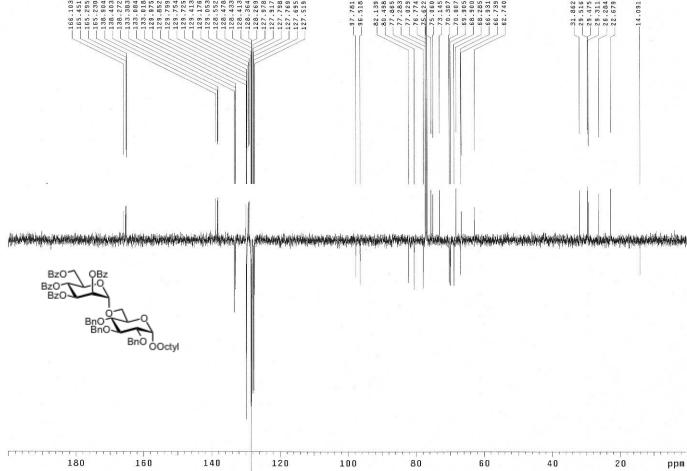

pht-7-15-A 500 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.2 C → actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul

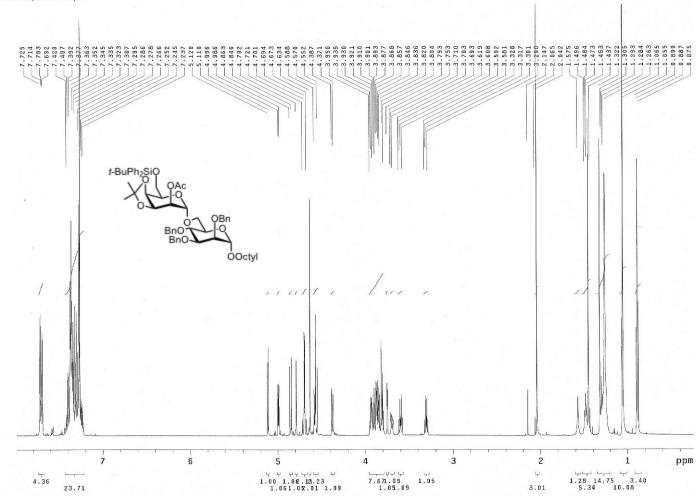


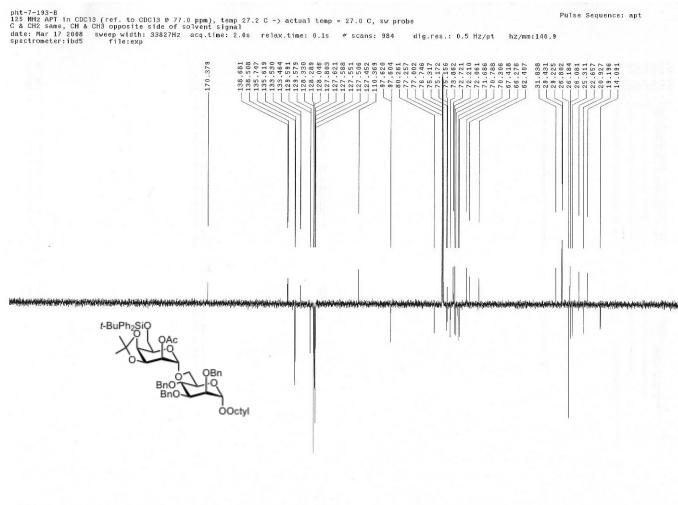
pht-7-15-A 125 MHz APT in CDCl3 (ref. to CDCl3 @ 77.0 ppm), temp 27.2 C -> actual temp = 27.0 C, sw probe C & CH2 same, CH & CH3 opposite side of solvent signal date: Sep 1 2007 sweep width: 33827Hz acq.time: 2.0s relax.time: 0.1s # scans: 1672 dig.res.: 0.5 Hz/pt hz/mm:104.6 Sbd&&Pf&&W&Pf&&G&Pt file:/mnt/d600/home9/tllnmr/nmrdata/pht/pht-7/pht-7-15-A-APTC.fid

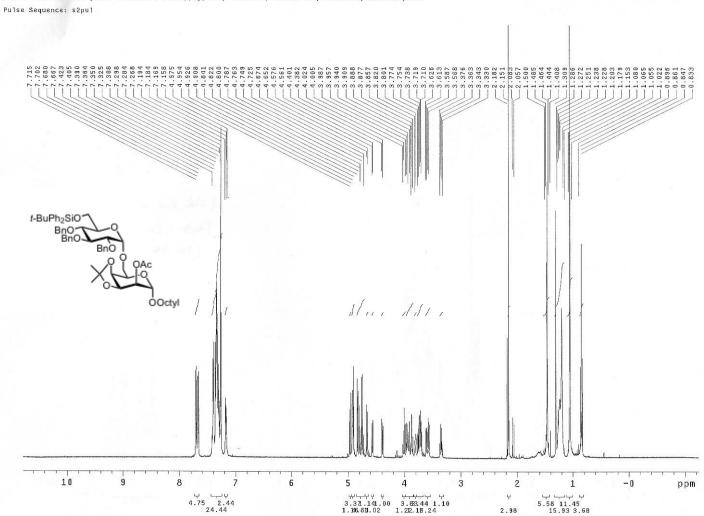


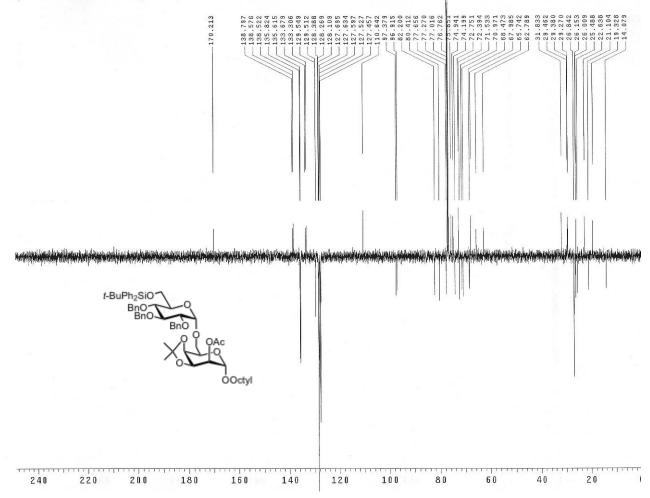
pht-7-19-A 500 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe Pulse Sequence: s2pul




500 MHz 1D in CDCl3 (ref. to CDCl3 0 7.26 ppm), temp 26.1 C -> actual temp = 27.0 C, autoxdb probe Pulse Sequence: s2pul


7-197-A 125 MHz APT in CDC13 (ref. to CDC13 0 77.0 ppm), temp 26.1 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal date: Mar 27 2008 sweep width: 33784Hz acq.time: 2.0s relax.time: 0.1s # scans: 232 dig.re 8µ&&&r&AmUVEPf860%Pt file:/mnt/d600/home9/tllnmr/nmrdata/pht/pht-7/pht-7-197-A-APTC.fid dig.res.: 0.5 Hz/pt hz/mm:104.7 -97.781 -96.518 139 498 865 283 82. 165. 66. 66.


pht-7-193-B 600 MHz 1D in CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 28.0 C -> actual temp = 27.0 C, id600 probe Pulse Sequence: s2pul



**** _____ THITTIT ppm

500 MHz 1D in CDC13 (ref. to CDC13 @ 7.26 ppm), temp 26.1 C -> actual temp = 27.0 C, autoxdb probe

pht-7-201-B 125 MHZ APT in CDC13 (ref. to CDC13 0 77.0 ppm), temp 26.1 C -> actual temp = 27.0 C, autoxdb probe C & CHZ same, CH & CH3 opposite side of solvent signal date: Apr 3 2008 sweep width: 33784Hz acq.time: 2.0s relax.time: 0.1s # scans: 400 dig.res.: 0.5 Hz/pt hz/mm:140.8 gµeeer&mewensesompt file:exp

