Cover Page for Supporting Information

Manuscript Title:

Zn(OTf)₂-catalyzed addition of amines to carbodiimides: efficient synthesis of guanidines and unpredicted formation of Zn–N amido species

Authors:

Dongzhen Li, Jie Guang, Wen-Xiong Zhang,* Yang Wang and Zhenfeng Xi*

Affiliations:

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China; State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China. Fax: 86 10 62751708; Tel: 86 10 62758294; E-mail: wx_zhang@pku.edu.cn

Contents:

1) Characterization Data	S 1
2) An alternative mechanism for the formation of guanidines	S4
3) X-ray crystallographic studies for 20 and 22	S4
SFig. 1 ORTEP drawing of 20 with 30% thermal ellipsoids.	S5
STable 1. Crystal data and structure refinement for 20 .	S 5
SFig. 2 ORTEP drawing of 22 with 30% thermal ellipsoids.	S6
STable 2. Crystal data and structure refinement for 22 .	S6
4) Copies of ¹ H NMR and ¹³ C NMR spectra of all new compounds	S7

1) Characterization Data

1. Colorless solid, yield 97%. ¹H NMR (400 MHz, C₆D₆): δ 0.91 (d, J = 6.4 Hz, 12H, CH₃), 3.52 (br, 2H, NH), 3.64-3.69 (m, 2H, CH), 6.90 (t, J = 7.6 Hz, 1H, p-C₆H₅), 7.10 (d, J = 7.6 Hz, 2H, o-C₆H₅), 7.25 (t, J = 7.6 Hz, 2H, m-C₆H₅). ¹³C NMR (100 MHz, C₆D₆): δ 23.4, 43.4, 121.3, 123.7, 129.6, 149.7, 151.6. ¹

2. Colorless solid, yield 96%. ¹H NMR (300 MHz, CDCl₃): δ 1.08-2.03 (m, 20H, CH₂), 3.42 (br, 2H, NH), 3.63 (br, 2H. CH), 6.86-7.23 (m, 5H, C₆H₅). ¹³C NMR (75 MHz, CDCl₃): δ 24.6, 25.3, 33.4, 49.8, 120.9, 123.3, 128.8, 149.6, 150.1. ²

3. Colorless solid, yield 96%. ¹H NMR (400 MHz, C₆D₆): δ 1.20 (s, 18H, CH₃), 3.67 (br, 2H, NH), 6.92-7.25 (m, 5H, C₆H₅). ¹³C NMR (100 MHz, CDCl₃): δ 30.0, 50.6, 121.4, 123.5, 129.5, 149.9, 151.5. ³

4. Colorless solid, yield 91%. ¹H NMR (300 MHz, C_6D_6): δ 4.37-4.47 (m, 4H, CH₂ and NH), 6.87-7.16 (m, 15H, C_6H_5). ¹³C NMR (75 MHz, C_6D_6): δ 46.3, 123.0, 124.4, 127.9, 128.9, 129.0, 130.1, 132.1, 132.2, 136.3, 136.4, 154.6, 154.8. ⁴

5. Colorless solid, yield 97%. ¹H NMR (300 MHz, C₆D₆): δ 0.88 (d, J = 6.3 Hz, 12 H, CH₃), 3.26-3.67 (m, 4H, CH and NH), 6.84-7.16 (m, 4H, C₆H₄). ¹³C NMR (75 MHz, C₆D₆): δ 23.2, 43.19, 116.1 (d, J = 21.6 Hz), 124.5 (d, J = 7.43 Hz), 147.6 (d, J = 2.48 Hz), 150.0 (d, J = 1.28 Hz), 160.1. ³

6. Colorless solid, yield 97%. ¹H NMR (300 MHz, C₆D₆): δ 0.78 (d, J = 6.3 Hz, 12H, CH₃), 3.33 (br, 2H, NH), 3.46-3.52 (m, 2H, CH), 6.78-7.11 (m, 4H, C₆H₄). ¹³C NMR (75 MHz, C₆D₆): δ 23.3, 43.4, 121.1, 121.9, 123.7, 130.5, 135.0, 149.8, 153.3. ¹

7. Colorless solid, yield 97%. ¹H NMR (400 MHz, C₆D₆): δ 0.86 (d, J = 6.4 Hz, 12H, CH₃), 3.37 (br, 2H, NH), 3.55-3.60 (m, 2H, CH), 6.68-7.31 (m, 4H, C₆H₄). ¹³C NMR (100 MHz, C₆D₆): δ 23.3, 43.4, 113.7, 125.4, 132.5, 149.6, 150.7. ¹

8. Colorless solid, yield 95%. ¹H NMR (400 MHz, C₆D₆): δ 0.93 (d, J = 6.8 Hz, 12H, CH₃), 3.32 (br, 2H, NH), 3.59-3.68 (m, 2H, CH), 6.41-7.87 (m, 4H, C₆H₄). ¹³C NMR (100 MHz, C₆D₆): δ 23.7, 43.5, 97.3, 122.9, 123.1, 129.3, 139.6, 149.3, 152.6. ¹

9. Colorless solid, yield 96%. ¹H NMR (300 MHz, C_6D_6): δ 0.91 (d, J = 6.3 Hz, 12 H, CH₃), 1.32 (d, J = 6.9 Hz, 6H, CH₃), 3.36-3.63 (m, 5H, CH and NH), 6.94-7.33 (m, 4H, C_6H_4). ¹³C NMR (75 MHz, C_6D_6): δ 23.3, 23.4, 28.6, 43.3, 122.1, 123.0, 126.2, 126.7, 142.2, 148.5, 148.8.³

10. Colorless solid, yield 94%. ¹H NMR (300 MHz, C₆D₆): δ 0.89 (d, J = 6.0 Hz, 12H, CH₃), 2.82 (s, 1H, CH), 3.54-3.67 (m, 4H, CH and NH), 6.99-7.17 (m, 4H, C₆H₄). ¹³C NMR (75 MHz, C₆D₆): δ 23.1, 43.2, 77.2, 84.6, 123.6, 124.6, 125.0, 127.1, 129.6, 150.1, 151.7. ³

11. Colorless solid, yield 97%. ¹H NMR (300 MHz, CDCl₃): δ 0.89-1.21 (m, 12H, CH₃), 2.27 (s, 6H, *o*-CH₃), 2.30 (s, 3H, *p*-CH₃), 3.39 (br, 2H, NH), 4.10 (br, 2H, CH), 6.92 (s, 2H, C₆H₂). ¹³C NMR (75 MHz, CDCl₃): δ 18.1, 20.7, 23.5, 43.1, 128.7, 130.7, 143.3, 148.0. ⁵

12. Colorless solid, yield 95%. ¹H NMR (300 MHz, C_6D_6): δ 0.95 (d, J = 6.3 Hz, 12H, CH₃), 3.45 (s, 3H, CH₃), 3.69-3.74 (m, 4H, CH and NH), 6.74-7.17 (m, 4H, C_6H_4). ¹³C NMR (75 MHz, C_6D_6): δ 23.3, 43.4, 55.5, 113.1, 122.0, 122.4, 125.0, 140.2, 150.0, 152.8.⁶

13. Colorless solid, yield 85%, m. p. 125.3~125.8 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.12 (d, J = 4.8 Hz, 12H, CH₃), 3.71 (br, 4H, CH and NH), 6.80-8.06 (m, 4H, C₆H₄). ¹³C NMR (75 MHz, CDCl₃): δ 22.7, 43.1, 122.0, 125.2, 139.7, 151.0, 158.4. HRMS calcd. for C₁₄H₂₁N₄: 245.1761, found 245.1757.²

16. Colorless solid, yield 95%. ¹H NMR (300 MHz, C_6D_6): δ 0.87 (d, J = 6.0 Hz, 12H, CH₃), 1.05 (t, J = 7.2 Hz, 3H, CH₃), 3.55-3.64 (m, 4H, CH, NH), 4.13-4.20 (q, J = 6.9 Hz, 2H, CH₂), 7.06-8.27 (m, 4H, C_6H_4). ¹³C NMR (75 MHz, C_6D_6): δ 14.4, 23.1, 43.3, 60.3, 123.2, 131.7, 149.8, 156.6, 166.6. ²

17. white solid, yield 94%. ¹H NMR (300 MHz, DMSO-*d*₆): δ 1.12 (d, *J* = 6.6 Hz, 24H, CH₃), 3.46 (br, 4H, CH), 3.78 (br, 4H, NH), 6.67 (s, C₆H₄). ¹³C NMR (75 MHz, DMSO-*d*₆): δ 22.8, 42.3, 123.3, 145.7, 150.4.⁷

18. Colorless solid, yield 95%. ¹H NMR (300 MHz, C₆D₆): δ 0.99 (d, J = 6.3 Hz, 12H, CH₃), 3.73-3.89 (m, 2H, CH), 6.80-8.29 (m, 3H, C₅H₃N). ¹³C NMR (75 MHz, C₆D₆): δ 23.3, 42.6, 78.9, 123.3, 144.5, 151.3, 153.9, 162.7. ¹

19. Colorless solid, yield 93%. ¹H NMR (400 MHz, CDCl₃): δ 1.23 (d, J = 6.4 Hz, 12H, CH₃), 2.22 (s, 3H, CH₃), 3.87 (br, 2H, CH), 6.08 (s, 1H, CH(thiazolyl))). ¹³C NMR (100 MHz, CDCl₃): δ 17.6, 23.2, 42.6, 102.5, 146.9, 152.4, 175.1.¹

19a. Colorless liquid, yield 94%. ¹H NMR (300 MHz, C₆D₆): δ 1.14 (d, J = 6.3 Hz, 12H, CH₃), 1.48 (t, 4H, CH₂), 3.31 (t, 4H, CH₂), 3.35-3.40 (m, 2H, CH). 7.15 (s, 1H, NH). ¹³C NMR (75 MHz, C₆D₆): δ 24.8, 25.4, 46.9, 48.3, 153.0. ⁸

These data of compounds 1-13 and 16-19 are consistent with those reported.

References:

(1) W.-X. Zhang, M. Nishiura and Z. Hou, Chem. Eur. J., 2007, 13, 4037–4051;

(2) Q. Li, S. Wang, S. Zhou, G. Yang, X. Zhu and Y. Liu, J. Org. Chem., 2007, 72, 6763–6767.

(3) W.-X. Zhang, D. Li, Z. Wang and Z. Xi, Organometallics, 2009, 28, 882–887.

(4) K. Ramadas, N. Janarthanan and R. Pritha, Synlett, 1997, 1053-1054.

(5) F. Montilla, A. Pastor and A. Galindo, J. Organomet. Chem., 2004, 689, 993–996.

- (6) Z. Du, W. Li, X. Zhu, F. Xu, and Q. Shen, J. Org. Chem., 2008, 73, 8966-8972.
- (7) T.-G. Ong, G. P. A. Yap and D. S. Richeson, J. Am. Chem. Soc., 2003, 125, 8100-8101.
- (8) X. Zhu, Z, Du, F. Xu and Q. Shen, J. Org. Chem., 2009, 74, 6347-6349.

2) An alternative mechanism for the formation of guanidines

 $Zn(OTf)_2$ acted as Lewis acid catalyst to activate a carbodiimide yielding the intermediate $RN^{\oplus} \equiv C-NR-Zn^{\Theta}(OTf)_2$ (E). Nucleophilic addition of an amine to E and proton transfer gave rise to the guanidine and regenerated $Zn(OTf)_2$. see: N. Yamamoto and M. Isobe, *Chem. Lett.*, 1994, 2299–2302.

3) X-ray crystallographic studies for 20 and 22

Crystals for X-ray analyses of **20** and **22** were obtained as described in the preparations. Data collections were performed at -100 °C on a Rigaku SATURN 724+ CCD diffractometer, using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The determination of crystal class and unit cell parameters was carried out by the CrystalClear (Rigaku Inc., 2008) program package. The raw frame data were processed using the CrystalClear (Rigaku Inc., 2008) to yield the reflection data file. The structure was solved by use of SHELXTL program. Refinement was performed on F^2 anisotropically for all the non-hydrogen atoms by the full-matrix least-squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters. Crystal data, data collection and processing parameters for **20** and **22** were given only in Supporting Information. Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-741356 (**20**), and CCDC-741355 (**22**). Copies of these data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

SFig. 1 ORTEP drawing of **20** with 30% thermal ellipsoids. Hydrogen atoms, except those on the nitrogen atoms, are omitted for clarity.

STable I. Crystal data and structure refi	nement for 20.			
Identification code	20			
Empirical formula	C ₄₈ H ₆₈ F ₁₂ N ₄ O ₁₄ S ₄ Zr	l ₂		
Formula weight	1412.04			
Temperature	173(2) K			
Wavelength	0.71073 Å			
Crystal system	Tetragonal			
Space group	I4(1)/a			
Unit cell dimensions	<i>a</i> = 35.199(5) Å	$\alpha = 90^{\circ}$		
	<i>b</i> = 35.199(5) Å	$\beta = 90^{\circ}$		
	c = 11.268(2) Å	$\gamma = 90$ °		
Volume	13960(4) Å ³			
Z	8			
Density (calculated)	1.344 Mg/m ³			
Absorption coefficient	0.894 mm ⁻¹			
F(000)	5824			
Crystal size	0.35 x 0.25 x 0.10 mm ³			
Theta range for data collection	1.16 to 25.00 °.			
Index ranges	-41<= h <= 41, -41<= k <= 41, -13 <= 1 <= 13			
Reflections collected	62839	62839		
Independent reflections	$6130 [R_{(int)} = 0.0623]$	$6130 [R_{(int)} = 0.0623]$		
Completeness to theta = $25.00 \circ$	99.7 %	99.7 %		
Absorption correction	Numerical	Numerical		
Max. and min. transmission	0.9160 and 0.7450	0.9160 and 0.7450		
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²		
Data / restraints / parameters	6130 / 21 / 391			
Goodness-of-fit on F ²	1.067			
Final R indices [I>2sigma(I)]	$R_1 = 0.0644, wR_2 = 0.19$	$R_1 = 0.0644, wR_2 = 0.1956$		
R indices (all data)	$R_1 = 0.0681, wR_2 = 0.19$	$R_1 = 0.0681, wR_2 = 0.1999$		
Largest diff. peak and hole	0.649 and -0.693 e. Å ⁻³			

STable 1. Crystal data and structure refinement for **20**

SFig. 2 ORTEP drawing of **22** with 30% thermal ellipsoids. Hydrogen atoms, except those on the nitrogen atoms, are omitted for clarity.

Identification code	22
Empirical formula	$C_{17}H_{28}F_3N_3O_3S$
Formula weight	411.48
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Pna2(1)
Unit cell dimensions	$a = 16.419(3)$ Å $\alpha = 90$ °.
	$b = 12.458(3)$ Å $\beta = 90$ °.
	$c = 10.520(2) \text{ Å} \qquad \gamma = 90 ^{\circ}.$
Volume	2151.8(7) Å ³
Z, Calculated density	4, 1.270 Mg/m ³
Absorption coefficient	0.196 mm ⁻¹
F(000)	872
Crystal s i z e	0.30 x 0.29 x 0.13 mm
Theta range for data collection	2.82 to 27.49 °.
Limiting indices	-14 <= h <= 21, -16 <= k <= 16, -13 <= 1 <= 12
Reflections collected / unique	$16883 / 4604 [R_{(int)} = 0.0369]$
Completeness to theta = $27.49 \circ$	99.7 %
Absorption correction	Numerical
Max. and min. transmission	0.9749 and 0.9435
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4604 / 1 / 244
Goodness-of-fit on F ²	1.082
Final R indices [I>2sigma(I)]	$R_1 = 0.0441, wR_2 = 0.0945$
R indices (all data)	$R_1 = 0.0482, wR_2 = 0.0977$
Absolute structure parameter	0.00(8)
Largest diff. peak and hole	0.185 and -0.200 e. Å ⁻³

4) Copies of ¹H NMR and ¹³C NMR spectra of all new compounds

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

